MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma Structured version   Visualization version   GIF version

Theorem logsqvma 27586
Description: A formula for log↑2(𝑁) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
Distinct variable group:   𝑢,𝑑,𝑥,𝑁

Proof of Theorem logsqvma
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvdsfi 16826 . . 3 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
2 fzfid 14014 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...𝑑) ∈ Fin)
3 elrabi 3687 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
43adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
5 dvdsssfz1 16355 . . . . . 6 (𝑑 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
64, 5syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
72, 6ssfid 9301 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ∈ Fin)
8 elrabi 3687 . . . . . . . . 9 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢 ∈ ℕ)
98ad2antll 729 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢 ∈ ℕ)
10 vmacl 27161 . . . . . . . 8 (𝑢 ∈ ℕ → (Λ‘𝑢) ∈ ℝ)
119, 10syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘𝑢) ∈ ℝ)
12 breq1 5146 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑑𝑢𝑑))
1312elrab 3692 . . . . . . . . . . 11 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ↔ (𝑢 ∈ ℕ ∧ 𝑢𝑑))
1413simprbi 496 . . . . . . . . . 10 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢𝑑)
1514ad2antll 729 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢𝑑)
163ad2antrl 728 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑑 ∈ ℕ)
17 nndivdvds 16299 . . . . . . . . . 10 ((𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
1816, 9, 17syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
1915, 18mpbid 232 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑑 / 𝑢) ∈ ℕ)
20 vmacl 27161 . . . . . . . 8 ((𝑑 / 𝑢) ∈ ℕ → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2119, 20syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2211, 21remulcld 11291 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℝ)
2322recnd 11289 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
2423anassrs 467 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑}) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
257, 24fsumcl 15769 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
26 vmacl 27161 . . . . . 6 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
274, 26syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑑) ∈ ℝ)
284nnrpd 13075 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℝ+)
2928relogcld 26665 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑑) ∈ ℝ)
3027, 29remulcld 11291 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℝ)
3130recnd 11289 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
321, 25, 31fsumadd 15776 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
33 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
34 fvoveq1 7454 . . . . . 6 (𝑑 = (𝑢 · 𝑘) → (Λ‘(𝑑 / 𝑢)) = (Λ‘((𝑢 · 𝑘) / 𝑢)))
3534oveq2d 7447 . . . . 5 (𝑑 = (𝑢 · 𝑘) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
3633, 35, 23fsumdvdscom 27228 . . . 4 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
37 ssrab2 4080 . . . . . . . . . . . . 13 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ ℕ
38 simpr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)})
3937, 38sselid 3981 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℕ)
4039nncnd 12282 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℂ)
41 ssrab2 4080 . . . . . . . . . . . . . 14 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
42 simpr 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4341, 42sselid 3981 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℕ)
4443nncnd 12282 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℂ)
4544adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ∈ ℂ)
4643nnne0d 12316 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ≠ 0)
4746adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ≠ 0)
4840, 45, 47divcan3d 12048 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → ((𝑢 · 𝑘) / 𝑢) = 𝑘)
4948fveq2d 6910 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) = (Λ‘𝑘))
5049sumeq2dv 15738 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘))
51 dvdsdivcl 16353 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5241, 51sselid 3981 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ ℕ)
53 vmasum 27260 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
5452, 53syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
55 nnrp 13046 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
5655adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑁 ∈ ℝ+)
5743nnrpd 13075 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℝ+)
5856, 57relogdivd 26668 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘(𝑁 / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
5950, 54, 583eqtrd 2781 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
6059oveq2d 7447 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))))
61 fzfid 14014 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...(𝑁 / 𝑢)) ∈ Fin)
62 dvdsssfz1 16355 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
6352, 62syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
6461, 63ssfid 9301 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin)
6543, 10syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℝ)
6665recnd 11289 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℂ)
67 vmacl 27161 . . . . . . . . . 10 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
6839, 67syl 17 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℝ)
6968recnd 11289 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℂ)
7049, 69eqeltrd 2841 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) ∈ ℂ)
7164, 66, 70fsummulc2 15820 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
72 relogcl 26617 . . . . . . . . 9 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℝ)
7372recnd 11289 . . . . . . . 8 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℂ)
7456, 73syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑁) ∈ ℂ)
7557relogcld 26665 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℝ)
7675recnd 11289 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℂ)
7766, 74, 76subdid 11719 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
7860, 71, 773eqtr3d 2785 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
7978sumeq2dv 15738 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8066, 74mulcld 11281 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑁)) ∈ ℂ)
8166, 76mulcld 11281 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑢)) ∈ ℂ)
821, 80, 81fsumsub 15824 . . . . 5 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))))
8355, 73syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
8483sqvald 14183 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) = ((log‘𝑁) · (log‘𝑁)))
85 vmasum 27260 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) = (log‘𝑁))
8685oveq1d 7446 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁) · (log‘𝑁)))
871, 83, 66fsummulc1 15821 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)))
8884, 86, 873eqtr2rd 2784 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁)↑2))
89 fveq2 6906 . . . . . . . . 9 (𝑢 = 𝑑 → (Λ‘𝑢) = (Λ‘𝑑))
90 fveq2 6906 . . . . . . . . 9 (𝑢 = 𝑑 → (log‘𝑢) = (log‘𝑑))
9189, 90oveq12d 7449 . . . . . . . 8 (𝑢 = 𝑑 → ((Λ‘𝑢) · (log‘𝑢)) = ((Λ‘𝑑) · (log‘𝑑)))
9291cbvsumv 15732 . . . . . . 7 Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))
9392a1i 11 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)))
9488, 93oveq12d 7449 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9582, 94eqtrd 2777 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9636, 79, 953eqtrd 2781 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9796oveq1d 7446 . 2 (𝑁 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9883sqcld 14184 . . 3 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) ∈ ℂ)
991, 31fsumcl 15769 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
10098, 99npcand 11624 . 2 (𝑁 ∈ ℕ → ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
10132, 97, 1003eqtrd 2781 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  +crp 13034  ...cfz 13547  cexp 14102  Σcsu 15722  cdvds 16290  logclog 26596  Λcvma 27135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-vma 27141
This theorem is referenced by:  logsqvma2  27587
  Copyright terms: Public domain W3C validator