MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma Structured version   Visualization version   GIF version

Theorem logsqvma 26595
Description: A formula for log↑2(𝑁) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
Distinct variable group:   𝑢,𝑑,𝑥,𝑁

Proof of Theorem logsqvma
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13621 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
2 dvdsssfz1 15955 . . . 4 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
31, 2ssfid 8971 . . 3 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
4 fzfid 13621 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...𝑑) ∈ Fin)
5 elrabi 3611 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
65adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
7 dvdsssfz1 15955 . . . . . 6 (𝑑 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
86, 7syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
94, 8ssfid 8971 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ∈ Fin)
10 elrabi 3611 . . . . . . . . 9 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢 ∈ ℕ)
1110ad2antll 725 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢 ∈ ℕ)
12 vmacl 26172 . . . . . . . 8 (𝑢 ∈ ℕ → (Λ‘𝑢) ∈ ℝ)
1311, 12syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘𝑢) ∈ ℝ)
14 breq1 5073 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑑𝑢𝑑))
1514elrab 3617 . . . . . . . . . . 11 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ↔ (𝑢 ∈ ℕ ∧ 𝑢𝑑))
1615simprbi 496 . . . . . . . . . 10 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢𝑑)
1716ad2antll 725 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢𝑑)
185ad2antrl 724 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑑 ∈ ℕ)
19 nndivdvds 15900 . . . . . . . . . 10 ((𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
2018, 11, 19syl2anc 583 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
2117, 20mpbid 231 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑑 / 𝑢) ∈ ℕ)
22 vmacl 26172 . . . . . . . 8 ((𝑑 / 𝑢) ∈ ℕ → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2321, 22syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2413, 23remulcld 10936 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℝ)
2524recnd 10934 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
2625anassrs 467 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑}) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
279, 26fsumcl 15373 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
28 vmacl 26172 . . . . . 6 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
296, 28syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑑) ∈ ℝ)
306nnrpd 12699 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℝ+)
3130relogcld 25683 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑑) ∈ ℝ)
3229, 31remulcld 10936 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℝ)
3332recnd 10934 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
343, 27, 33fsumadd 15380 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
35 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
36 fvoveq1 7278 . . . . . 6 (𝑑 = (𝑢 · 𝑘) → (Λ‘(𝑑 / 𝑢)) = (Λ‘((𝑢 · 𝑘) / 𝑢)))
3736oveq2d 7271 . . . . 5 (𝑑 = (𝑢 · 𝑘) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
3835, 37, 25fsumdvdscom 26239 . . . 4 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
39 ssrab2 4009 . . . . . . . . . . . . 13 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ ℕ
40 simpr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)})
4139, 40sselid 3915 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℕ)
4241nncnd 11919 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℂ)
43 ssrab2 4009 . . . . . . . . . . . . . 14 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
44 simpr 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4543, 44sselid 3915 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℕ)
4645nncnd 11919 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℂ)
4746adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ∈ ℂ)
4845nnne0d 11953 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ≠ 0)
4948adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ≠ 0)
5042, 47, 49divcan3d 11686 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → ((𝑢 · 𝑘) / 𝑢) = 𝑘)
5150fveq2d 6760 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) = (Λ‘𝑘))
5251sumeq2dv 15343 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘))
53 dvdsdivcl 15953 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5443, 53sselid 3915 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ ℕ)
55 vmasum 26269 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
5654, 55syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
57 nnrp 12670 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
5857adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑁 ∈ ℝ+)
5945nnrpd 12699 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℝ+)
6058, 59relogdivd 25686 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘(𝑁 / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
6152, 56, 603eqtrd 2782 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
6261oveq2d 7271 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))))
63 fzfid 13621 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...(𝑁 / 𝑢)) ∈ Fin)
64 dvdsssfz1 15955 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
6554, 64syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
6663, 65ssfid 8971 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin)
6745, 12syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℝ)
6867recnd 10934 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℂ)
69 vmacl 26172 . . . . . . . . . 10 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
7041, 69syl 17 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℝ)
7170recnd 10934 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℂ)
7251, 71eqeltrd 2839 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) ∈ ℂ)
7366, 68, 72fsummulc2 15424 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
74 relogcl 25636 . . . . . . . . 9 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℝ)
7574recnd 10934 . . . . . . . 8 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℂ)
7658, 75syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑁) ∈ ℂ)
7759relogcld 25683 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℝ)
7877recnd 10934 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℂ)
7968, 76, 78subdid 11361 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8062, 73, 793eqtr3d 2786 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8180sumeq2dv 15343 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8268, 76mulcld 10926 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑁)) ∈ ℂ)
8368, 78mulcld 10926 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑢)) ∈ ℂ)
843, 82, 83fsumsub 15428 . . . . 5 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))))
8557, 75syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
8685sqvald 13789 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) = ((log‘𝑁) · (log‘𝑁)))
87 vmasum 26269 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) = (log‘𝑁))
8887oveq1d 7270 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁) · (log‘𝑁)))
893, 85, 68fsummulc1 15425 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)))
9086, 88, 893eqtr2rd 2785 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁)↑2))
91 fveq2 6756 . . . . . . . . 9 (𝑢 = 𝑑 → (Λ‘𝑢) = (Λ‘𝑑))
92 fveq2 6756 . . . . . . . . 9 (𝑢 = 𝑑 → (log‘𝑢) = (log‘𝑑))
9391, 92oveq12d 7273 . . . . . . . 8 (𝑢 = 𝑑 → ((Λ‘𝑢) · (log‘𝑢)) = ((Λ‘𝑑) · (log‘𝑑)))
9493cbvsumv 15336 . . . . . . 7 Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))
9594a1i 11 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)))
9690, 95oveq12d 7273 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9784, 96eqtrd 2778 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9838, 81, 973eqtrd 2782 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9998oveq1d 7270 . 2 (𝑁 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
10085sqcld 13790 . . 3 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) ∈ ℂ)
1013, 33fsumcl 15373 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
102100, 101npcand 11266 . 2 (𝑁 ∈ ℕ → ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
10334, 99, 1023eqtrd 2782 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  +crp 12659  ...cfz 13168  cexp 13710  Σcsu 15325  cdvds 15891  logclog 25615  Λcvma 26146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-vma 26152
This theorem is referenced by:  logsqvma2  26596
  Copyright terms: Public domain W3C validator