Step | Hyp | Ref
| Expression |
1 | | fzfid 13693 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(1...𝑁) ∈
Fin) |
2 | | dvdsssfz1 16027 |
. . . 4
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁)) |
3 | 1, 2 | ssfid 9042 |
. . 3
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
4 | | fzfid 13693 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (1...𝑑) ∈ Fin) |
5 | | elrabi 3618 |
. . . . . . 7
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → 𝑑 ∈ ℕ) |
6 | 5 | adantl 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑑 ∈ ℕ) |
7 | | dvdsssfz1 16027 |
. . . . . 6
⊢ (𝑑 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ⊆ (1...𝑑)) |
8 | 6, 7 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ⊆ (1...𝑑)) |
9 | 4, 8 | ssfid 9042 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ∈ Fin) |
10 | | elrabi 3618 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} → 𝑢 ∈ ℕ) |
11 | 10 | ad2antll 726 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → 𝑢 ∈ ℕ) |
12 | | vmacl 26267 |
. . . . . . . 8
⊢ (𝑢 ∈ ℕ →
(Λ‘𝑢) ∈
ℝ) |
13 | 11, 12 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (Λ‘𝑢) ∈ ℝ) |
14 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑥 ∥ 𝑑 ↔ 𝑢 ∥ 𝑑)) |
15 | 14 | elrab 3624 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ↔ (𝑢 ∈ ℕ ∧ 𝑢 ∥ 𝑑)) |
16 | 15 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} → 𝑢 ∥ 𝑑) |
17 | 16 | ad2antll 726 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → 𝑢 ∥ 𝑑) |
18 | 5 | ad2antrl 725 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → 𝑑 ∈ ℕ) |
19 | | nndivdvds 15972 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ) → (𝑢 ∥ 𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ)) |
20 | 18, 11, 19 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (𝑢 ∥ 𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ)) |
21 | 17, 20 | mpbid 231 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (𝑑 / 𝑢) ∈ ℕ) |
22 | | vmacl 26267 |
. . . . . . . 8
⊢ ((𝑑 / 𝑢) ∈ ℕ →
(Λ‘(𝑑 / 𝑢)) ∈
ℝ) |
23 | 21, 22 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (Λ‘(𝑑 / 𝑢)) ∈ ℝ) |
24 | 13, 23 | remulcld 11005 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → ((Λ‘𝑢) ·
(Λ‘(𝑑 / 𝑢))) ∈
ℝ) |
25 | 24 | recnd 11003 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → ((Λ‘𝑢) ·
(Λ‘(𝑑 / 𝑢))) ∈
ℂ) |
26 | 25 | anassrs 468 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑}) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ) |
27 | 9, 26 | fsumcl 15445 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ) |
28 | | vmacl 26267 |
. . . . . 6
⊢ (𝑑 ∈ ℕ →
(Λ‘𝑑) ∈
ℝ) |
29 | 6, 28 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (Λ‘𝑑) ∈ ℝ) |
30 | 6 | nnrpd 12770 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑑 ∈ ℝ+) |
31 | 30 | relogcld 25778 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑑) ∈ ℝ) |
32 | 29, 31 | remulcld 11005 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈
ℝ) |
33 | 32 | recnd 11003 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈
ℂ) |
34 | 3, 27, 33 | fsumadd 15452 |
. 2
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
35 | | id 22 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
36 | | fvoveq1 7298 |
. . . . . 6
⊢ (𝑑 = (𝑢 · 𝑘) → (Λ‘(𝑑 / 𝑢)) = (Λ‘((𝑢 · 𝑘) / 𝑢))) |
37 | 36 | oveq2d 7291 |
. . . . 5
⊢ (𝑑 = (𝑢 · 𝑘) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢)))) |
38 | 35, 37, 25 | fsumdvdscom 26334 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢)))) |
39 | | ssrab2 4013 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ ℕ |
40 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) |
41 | 39, 40 | sselid 3919 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℕ) |
42 | 41 | nncnd 11989 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℂ) |
43 | | ssrab2 4013 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ |
44 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
45 | 43, 44 | sselid 3919 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ ℕ) |
46 | 45 | nncnd 11989 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ ℂ) |
47 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ∈ ℂ) |
48 | 45 | nnne0d 12023 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ≠ 0) |
49 | 48 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ≠ 0) |
50 | 42, 47, 49 | divcan3d 11756 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → ((𝑢 · 𝑘) / 𝑢) = 𝑘) |
51 | 50 | fveq2d 6778 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) = (Λ‘𝑘)) |
52 | 51 | sumeq2dv 15415 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘)) |
53 | | dvdsdivcl 16025 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑢) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
54 | 43, 53 | sselid 3919 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑢) ∈ ℕ) |
55 | | vmasum 26364 |
. . . . . . . . 9
⊢ ((𝑁 / 𝑢) ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢))) |
56 | 54, 55 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢))) |
57 | | nnrp 12741 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
58 | 57 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑁 ∈
ℝ+) |
59 | 45 | nnrpd 12770 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ ℝ+) |
60 | 58, 59 | relogdivd 25781 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘(𝑁 / 𝑢)) = ((log‘𝑁) − (log‘𝑢))) |
61 | 52, 56, 60 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = ((log‘𝑁) − (log‘𝑢))) |
62 | 61 | oveq2d 7291 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢)))) |
63 | | fzfid 13693 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (1...(𝑁 / 𝑢)) ∈ Fin) |
64 | | dvdsssfz1 16027 |
. . . . . . . . 9
⊢ ((𝑁 / 𝑢) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢))) |
65 | 54, 64 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢))) |
66 | 63, 65 | ssfid 9042 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin) |
67 | 45, 12 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (Λ‘𝑢) ∈ ℝ) |
68 | 67 | recnd 11003 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (Λ‘𝑢) ∈ ℂ) |
69 | | vmacl 26267 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
(Λ‘𝑘) ∈
ℝ) |
70 | 41, 69 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℝ) |
71 | 70 | recnd 11003 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℂ) |
72 | 51, 71 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) ∈ ℂ) |
73 | 66, 68, 72 | fsummulc2 15496 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢)))) |
74 | | relogcl 25731 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ+
→ (log‘𝑁) ∈
ℝ) |
75 | 74 | recnd 11003 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ+
→ (log‘𝑁) ∈
ℂ) |
76 | 58, 75 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑁) ∈ ℂ) |
77 | 59 | relogcld 25778 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑢) ∈ ℝ) |
78 | 77 | recnd 11003 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑢) ∈ ℂ) |
79 | 68, 76, 78 | subdid 11431 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) −
((Λ‘𝑢)
· (log‘𝑢)))) |
80 | 62, 73, 79 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢)))) |
81 | 80 | sumeq2dv 15415 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢)))) |
82 | 68, 76 | mulcld 10995 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · (log‘𝑁)) ∈
ℂ) |
83 | 68, 78 | mulcld 10995 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · (log‘𝑢)) ∈
ℂ) |
84 | 3, 82, 83 | fsumsub 15500 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢)))) |
85 | 57, 75 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(log‘𝑁) ∈
ℂ) |
86 | 85 | sqvald 13861 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
((log‘𝑁)↑2) =
((log‘𝑁) ·
(log‘𝑁))) |
87 | | vmasum 26364 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Λ‘𝑢) = (log‘𝑁)) |
88 | 87 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁) · (log‘𝑁))) |
89 | 3, 85, 68 | fsummulc1 15497 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Λ‘𝑢) · (log‘𝑁)) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁))) |
90 | 86, 88, 89 | 3eqtr2rd 2785 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁)↑2)) |
91 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → (Λ‘𝑢) = (Λ‘𝑑)) |
92 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → (log‘𝑢) = (log‘𝑑)) |
93 | 91, 92 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑢 = 𝑑 → ((Λ‘𝑢) · (log‘𝑢)) = ((Λ‘𝑑) · (log‘𝑑))) |
94 | 93 | cbvsumv 15408 |
. . . . . . 7
⊢
Σ𝑢 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)) |
95 | 94 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) |
96 | 90, 95 | oveq12d 7293 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
97 | 84, 96 | eqtrd 2778 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
98 | 38, 81, 97 | 3eqtrd 2782 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
99 | 98 | oveq1d 7290 |
. 2
⊢ (𝑁 ∈ ℕ →
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
100 | 85 | sqcld 13862 |
. . 3
⊢ (𝑁 ∈ ℕ →
((log‘𝑁)↑2)
∈ ℂ) |
101 | 3, 33 | fsumcl 15445 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ) |
102 | 100, 101 | npcand 11336 |
. 2
⊢ (𝑁 ∈ ℕ →
((((log‘𝑁)↑2)
− Σ𝑑 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2)) |
103 | 34, 99, 102 | 3eqtrd 2782 |
1
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2)) |