MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma Structured version   Visualization version   GIF version

Theorem logsqvma 26423
Description: A formula for log↑2(𝑁) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
Distinct variable group:   𝑢,𝑑,𝑥,𝑁

Proof of Theorem logsqvma
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13546 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
2 dvdsssfz1 15879 . . . 4 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
31, 2ssfid 8898 . . 3 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
4 fzfid 13546 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...𝑑) ∈ Fin)
5 elrabi 3596 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
65adantl 485 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
7 dvdsssfz1 15879 . . . . . 6 (𝑑 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
86, 7syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
94, 8ssfid 8898 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ∈ Fin)
10 elrabi 3596 . . . . . . . . 9 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢 ∈ ℕ)
1110ad2antll 729 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢 ∈ ℕ)
12 vmacl 26000 . . . . . . . 8 (𝑢 ∈ ℕ → (Λ‘𝑢) ∈ ℝ)
1311, 12syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘𝑢) ∈ ℝ)
14 breq1 5056 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑑𝑢𝑑))
1514elrab 3602 . . . . . . . . . . 11 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ↔ (𝑢 ∈ ℕ ∧ 𝑢𝑑))
1615simprbi 500 . . . . . . . . . 10 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢𝑑)
1716ad2antll 729 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢𝑑)
185ad2antrl 728 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑑 ∈ ℕ)
19 nndivdvds 15824 . . . . . . . . . 10 ((𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
2018, 11, 19syl2anc 587 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
2117, 20mpbid 235 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑑 / 𝑢) ∈ ℕ)
22 vmacl 26000 . . . . . . . 8 ((𝑑 / 𝑢) ∈ ℕ → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2321, 22syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2413, 23remulcld 10863 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℝ)
2524recnd 10861 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
2625anassrs 471 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑}) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
279, 26fsumcl 15297 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
28 vmacl 26000 . . . . . 6 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
296, 28syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑑) ∈ ℝ)
306nnrpd 12626 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℝ+)
3130relogcld 25511 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑑) ∈ ℝ)
3229, 31remulcld 10863 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℝ)
3332recnd 10861 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
343, 27, 33fsumadd 15304 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
35 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
36 fvoveq1 7236 . . . . . 6 (𝑑 = (𝑢 · 𝑘) → (Λ‘(𝑑 / 𝑢)) = (Λ‘((𝑢 · 𝑘) / 𝑢)))
3736oveq2d 7229 . . . . 5 (𝑑 = (𝑢 · 𝑘) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
3835, 37, 25fsumdvdscom 26067 . . . 4 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
39 ssrab2 3993 . . . . . . . . . . . . 13 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ ℕ
40 simpr 488 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)})
4139, 40sseldi 3899 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℕ)
4241nncnd 11846 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℂ)
43 ssrab2 3993 . . . . . . . . . . . . . 14 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
44 simpr 488 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4543, 44sseldi 3899 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℕ)
4645nncnd 11846 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℂ)
4746adantr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ∈ ℂ)
4845nnne0d 11880 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ≠ 0)
4948adantr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ≠ 0)
5042, 47, 49divcan3d 11613 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → ((𝑢 · 𝑘) / 𝑢) = 𝑘)
5150fveq2d 6721 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) = (Λ‘𝑘))
5251sumeq2dv 15267 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘))
53 dvdsdivcl 15877 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5443, 53sseldi 3899 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ ℕ)
55 vmasum 26097 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
5654, 55syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
57 nnrp 12597 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
5857adantr 484 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑁 ∈ ℝ+)
5945nnrpd 12626 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℝ+)
6058, 59relogdivd 25514 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘(𝑁 / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
6152, 56, 603eqtrd 2781 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
6261oveq2d 7229 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))))
63 fzfid 13546 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...(𝑁 / 𝑢)) ∈ Fin)
64 dvdsssfz1 15879 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
6554, 64syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
6663, 65ssfid 8898 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin)
6745, 12syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℝ)
6867recnd 10861 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℂ)
69 vmacl 26000 . . . . . . . . . 10 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
7041, 69syl 17 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℝ)
7170recnd 10861 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℂ)
7251, 71eqeltrd 2838 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) ∈ ℂ)
7366, 68, 72fsummulc2 15348 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
74 relogcl 25464 . . . . . . . . 9 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℝ)
7574recnd 10861 . . . . . . . 8 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℂ)
7658, 75syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑁) ∈ ℂ)
7759relogcld 25511 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℝ)
7877recnd 10861 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℂ)
7968, 76, 78subdid 11288 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8062, 73, 793eqtr3d 2785 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8180sumeq2dv 15267 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8268, 76mulcld 10853 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑁)) ∈ ℂ)
8368, 78mulcld 10853 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑢)) ∈ ℂ)
843, 82, 83fsumsub 15352 . . . . 5 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))))
8557, 75syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
8685sqvald 13713 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) = ((log‘𝑁) · (log‘𝑁)))
87 vmasum 26097 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) = (log‘𝑁))
8887oveq1d 7228 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁) · (log‘𝑁)))
893, 85, 68fsummulc1 15349 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)))
9086, 88, 893eqtr2rd 2784 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁)↑2))
91 fveq2 6717 . . . . . . . . 9 (𝑢 = 𝑑 → (Λ‘𝑢) = (Λ‘𝑑))
92 fveq2 6717 . . . . . . . . 9 (𝑢 = 𝑑 → (log‘𝑢) = (log‘𝑑))
9391, 92oveq12d 7231 . . . . . . . 8 (𝑢 = 𝑑 → ((Λ‘𝑢) · (log‘𝑢)) = ((Λ‘𝑑) · (log‘𝑑)))
9493cbvsumv 15260 . . . . . . 7 Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))
9594a1i 11 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)))
9690, 95oveq12d 7231 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9784, 96eqtrd 2777 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9838, 81, 973eqtrd 2781 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
9998oveq1d 7228 . 2 (𝑁 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
10085sqcld 13714 . . 3 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) ∈ ℂ)
1013, 33fsumcl 15297 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
102100, 101npcand 11193 . 2 (𝑁 ∈ ℕ → ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
10334, 99, 1023eqtrd 2781 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  {crab 3065  wss 3866   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  cmin 11062   / cdiv 11489  cn 11830  2c2 11885  +crp 12586  ...cfz 13095  cexp 13635  Σcsu 15249  cdvds 15815  logclog 25443  Λcvma 25974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-dvds 15816  df-gcd 16054  df-prm 16229  df-pc 16390  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-vma 25980
This theorem is referenced by:  logsqvma2  26424
  Copyright terms: Public domain W3C validator