| Step | Hyp | Ref
| Expression |
| 1 | | dvdsfi 16826 |
. . 3
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
| 2 | | fzfid 14014 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (1...𝑑) ∈ Fin) |
| 3 | | elrabi 3687 |
. . . . . . 7
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → 𝑑 ∈ ℕ) |
| 4 | 3 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑑 ∈ ℕ) |
| 5 | | dvdsssfz1 16355 |
. . . . . 6
⊢ (𝑑 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ⊆ (1...𝑑)) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ⊆ (1...𝑑)) |
| 7 | 2, 6 | ssfid 9301 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ∈ Fin) |
| 8 | | elrabi 3687 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} → 𝑢 ∈ ℕ) |
| 9 | 8 | ad2antll 729 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → 𝑢 ∈ ℕ) |
| 10 | | vmacl 27161 |
. . . . . . . 8
⊢ (𝑢 ∈ ℕ →
(Λ‘𝑢) ∈
ℝ) |
| 11 | 9, 10 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (Λ‘𝑢) ∈ ℝ) |
| 12 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑥 ∥ 𝑑 ↔ 𝑢 ∥ 𝑑)) |
| 13 | 12 | elrab 3692 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ↔ (𝑢 ∈ ℕ ∧ 𝑢 ∥ 𝑑)) |
| 14 | 13 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} → 𝑢 ∥ 𝑑) |
| 15 | 14 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → 𝑢 ∥ 𝑑) |
| 16 | 3 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → 𝑑 ∈ ℕ) |
| 17 | | nndivdvds 16299 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ) → (𝑢 ∥ 𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ)) |
| 18 | 16, 9, 17 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (𝑢 ∥ 𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ)) |
| 19 | 15, 18 | mpbid 232 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (𝑑 / 𝑢) ∈ ℕ) |
| 20 | | vmacl 27161 |
. . . . . . . 8
⊢ ((𝑑 / 𝑢) ∈ ℕ →
(Λ‘(𝑑 / 𝑢)) ∈
ℝ) |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (Λ‘(𝑑 / 𝑢)) ∈ ℝ) |
| 22 | 11, 21 | remulcld 11291 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → ((Λ‘𝑢) ·
(Λ‘(𝑑 / 𝑢))) ∈
ℝ) |
| 23 | 22 | recnd 11289 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → ((Λ‘𝑢) ·
(Λ‘(𝑑 / 𝑢))) ∈
ℂ) |
| 24 | 23 | anassrs 467 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑}) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ) |
| 25 | 7, 24 | fsumcl 15769 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ) |
| 26 | | vmacl 27161 |
. . . . . 6
⊢ (𝑑 ∈ ℕ →
(Λ‘𝑑) ∈
ℝ) |
| 27 | 4, 26 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (Λ‘𝑑) ∈ ℝ) |
| 28 | 4 | nnrpd 13075 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑑 ∈ ℝ+) |
| 29 | 28 | relogcld 26665 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑑) ∈ ℝ) |
| 30 | 27, 29 | remulcld 11291 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈
ℝ) |
| 31 | 30 | recnd 11289 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈
ℂ) |
| 32 | 1, 25, 31 | fsumadd 15776 |
. 2
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 33 | | id 22 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
| 34 | | fvoveq1 7454 |
. . . . . 6
⊢ (𝑑 = (𝑢 · 𝑘) → (Λ‘(𝑑 / 𝑢)) = (Λ‘((𝑢 · 𝑘) / 𝑢))) |
| 35 | 34 | oveq2d 7447 |
. . . . 5
⊢ (𝑑 = (𝑢 · 𝑘) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢)))) |
| 36 | 33, 35, 23 | fsumdvdscom 27228 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢)))) |
| 37 | | ssrab2 4080 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ ℕ |
| 38 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) |
| 39 | 37, 38 | sselid 3981 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℕ) |
| 40 | 39 | nncnd 12282 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℂ) |
| 41 | | ssrab2 4080 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ |
| 42 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 43 | 41, 42 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ ℕ) |
| 44 | 43 | nncnd 12282 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ ℂ) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ∈ ℂ) |
| 46 | 43 | nnne0d 12316 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ≠ 0) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ≠ 0) |
| 48 | 40, 45, 47 | divcan3d 12048 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → ((𝑢 · 𝑘) / 𝑢) = 𝑘) |
| 49 | 48 | fveq2d 6910 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) = (Λ‘𝑘)) |
| 50 | 49 | sumeq2dv 15738 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘)) |
| 51 | | dvdsdivcl 16353 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑢) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 52 | 41, 51 | sselid 3981 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑢) ∈ ℕ) |
| 53 | | vmasum 27260 |
. . . . . . . . 9
⊢ ((𝑁 / 𝑢) ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢))) |
| 54 | 52, 53 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢))) |
| 55 | | nnrp 13046 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
| 56 | 55 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑁 ∈
ℝ+) |
| 57 | 43 | nnrpd 13075 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ ℝ+) |
| 58 | 56, 57 | relogdivd 26668 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘(𝑁 / 𝑢)) = ((log‘𝑁) − (log‘𝑢))) |
| 59 | 50, 54, 58 | 3eqtrd 2781 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = ((log‘𝑁) − (log‘𝑢))) |
| 60 | 59 | oveq2d 7447 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢)))) |
| 61 | | fzfid 14014 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (1...(𝑁 / 𝑢)) ∈ Fin) |
| 62 | | dvdsssfz1 16355 |
. . . . . . . . 9
⊢ ((𝑁 / 𝑢) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢))) |
| 63 | 52, 62 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢))) |
| 64 | 61, 63 | ssfid 9301 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin) |
| 65 | 43, 10 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (Λ‘𝑢) ∈ ℝ) |
| 66 | 65 | recnd 11289 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (Λ‘𝑢) ∈ ℂ) |
| 67 | | vmacl 27161 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
(Λ‘𝑘) ∈
ℝ) |
| 68 | 39, 67 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℝ) |
| 69 | 68 | recnd 11289 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℂ) |
| 70 | 49, 69 | eqeltrd 2841 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) ∈ ℂ) |
| 71 | 64, 66, 70 | fsummulc2 15820 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢)))) |
| 72 | | relogcl 26617 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ+
→ (log‘𝑁) ∈
ℝ) |
| 73 | 72 | recnd 11289 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ+
→ (log‘𝑁) ∈
ℂ) |
| 74 | 56, 73 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑁) ∈ ℂ) |
| 75 | 57 | relogcld 26665 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑢) ∈ ℝ) |
| 76 | 75 | recnd 11289 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑢) ∈ ℂ) |
| 77 | 66, 74, 76 | subdid 11719 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) −
((Λ‘𝑢)
· (log‘𝑢)))) |
| 78 | 60, 71, 77 | 3eqtr3d 2785 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢)))) |
| 79 | 78 | sumeq2dv 15738 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢)))) |
| 80 | 66, 74 | mulcld 11281 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · (log‘𝑁)) ∈
ℂ) |
| 81 | 66, 76 | mulcld 11281 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · (log‘𝑢)) ∈
ℂ) |
| 82 | 1, 80, 81 | fsumsub 15824 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢)))) |
| 83 | 55, 73 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(log‘𝑁) ∈
ℂ) |
| 84 | 83 | sqvald 14183 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
((log‘𝑁)↑2) =
((log‘𝑁) ·
(log‘𝑁))) |
| 85 | | vmasum 27260 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Λ‘𝑢) = (log‘𝑁)) |
| 86 | 85 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁) · (log‘𝑁))) |
| 87 | 1, 83, 66 | fsummulc1 15821 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Λ‘𝑢) · (log‘𝑁)) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁))) |
| 88 | 84, 86, 87 | 3eqtr2rd 2784 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁)↑2)) |
| 89 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → (Λ‘𝑢) = (Λ‘𝑑)) |
| 90 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → (log‘𝑢) = (log‘𝑑)) |
| 91 | 89, 90 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑢 = 𝑑 → ((Λ‘𝑢) · (log‘𝑢)) = ((Λ‘𝑑) · (log‘𝑑))) |
| 92 | 91 | cbvsumv 15732 |
. . . . . . 7
⊢
Σ𝑢 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)) |
| 93 | 92 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) |
| 94 | 88, 93 | oveq12d 7449 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 95 | 82, 94 | eqtrd 2777 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 96 | 36, 79, 95 | 3eqtrd 2781 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 97 | 96 | oveq1d 7446 |
. 2
⊢ (𝑁 ∈ ℕ →
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 98 | 83 | sqcld 14184 |
. . 3
⊢ (𝑁 ∈ ℕ →
((log‘𝑁)↑2)
∈ ℂ) |
| 99 | 1, 31 | fsumcl 15769 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ) |
| 100 | 98, 99 | npcand 11624 |
. 2
⊢ (𝑁 ∈ ℕ →
((((log‘𝑁)↑2)
− Σ𝑑 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2)) |
| 101 | 32, 97, 100 | 3eqtrd 2781 |
1
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2)) |