Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopvadd2 Structured version   Visualization version   GIF version

Theorem dvhopvadd2 41095
Description: The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd 41094 and/or dvhfplusr 41085. (Contributed by NM, 26-Sep-2014.)
Hypotheses
Ref Expression
dvhopvadd2.h 𝐻 = (LHyp‘𝐾)
dvhopvadd2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhopvadd2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhopvadd2.p + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
dvhopvadd2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhopvadd2.s = (+g𝑈)
Assertion
Ref Expression
dvhopvadd2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 + 𝑅)⟩)
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝐻   𝑓,𝑠,𝑡,𝐾   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   + (𝑡,𝑓,𝑠)   (𝑡,𝑓,𝑠)   𝑄(𝑡,𝑓,𝑠)   𝑅(𝑡,𝑓,𝑠)   𝑇(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐺(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑠)

Proof of Theorem dvhopvadd2
StepHypRef Expression
1 dvhopvadd2.h . . 3 𝐻 = (LHyp‘𝐾)
2 dvhopvadd2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhopvadd2.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvhopvadd2.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2730 . . 3 (Scalar‘𝑈) = (Scalar‘𝑈)
6 dvhopvadd2.s . . 3 = (+g𝑈)
7 eqid 2730 . . 3 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
81, 2, 3, 4, 5, 6, 7dvhopvadd 41094 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄(+g‘(Scalar‘𝑈))𝑅)⟩)
9 dvhopvadd2.p . . . . . 6 + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
101, 2, 3, 4, 5, 9, 7dvhfplusr 41085 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = + )
11103ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (+g‘(Scalar‘𝑈)) = + )
1211oveqd 7407 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (𝑄(+g‘(Scalar‘𝑈))𝑅) = (𝑄 + 𝑅))
1312opeq2d 4847 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨(𝐹𝐺), (𝑄(+g‘(Scalar‘𝑈))𝑅)⟩ = ⟨(𝐹𝐺), (𝑄 + 𝑅)⟩)
148, 13eqtrd 2765 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 + 𝑅)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4598  cmpt 5191  ccom 5645  cfv 6514  (class class class)co 7390  cmpo 7392  +gcplusg 17227  Scalarcsca 17230  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  TEndoctendo 40753  DVecHcdvh 41079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-edring 40758  df-dvech 41080
This theorem is referenced by:  xihopellsmN  41255  dihopellsm  41256
  Copyright terms: Public domain W3C validator