Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopvadd2 Structured version   Visualization version   GIF version

Theorem dvhopvadd2 41113
Description: The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd 41112 and/or dvhfplusr 41103. (Contributed by NM, 26-Sep-2014.)
Hypotheses
Ref Expression
dvhopvadd2.h 𝐻 = (LHyp‘𝐾)
dvhopvadd2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhopvadd2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhopvadd2.p + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
dvhopvadd2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhopvadd2.s = (+g𝑈)
Assertion
Ref Expression
dvhopvadd2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 + 𝑅)⟩)
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝐻   𝑓,𝑠,𝑡,𝐾   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   + (𝑡,𝑓,𝑠)   (𝑡,𝑓,𝑠)   𝑄(𝑡,𝑓,𝑠)   𝑅(𝑡,𝑓,𝑠)   𝑇(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐺(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑠)

Proof of Theorem dvhopvadd2
StepHypRef Expression
1 dvhopvadd2.h . . 3 𝐻 = (LHyp‘𝐾)
2 dvhopvadd2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhopvadd2.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvhopvadd2.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2735 . . 3 (Scalar‘𝑈) = (Scalar‘𝑈)
6 dvhopvadd2.s . . 3 = (+g𝑈)
7 eqid 2735 . . 3 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
81, 2, 3, 4, 5, 6, 7dvhopvadd 41112 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄(+g‘(Scalar‘𝑈))𝑅)⟩)
9 dvhopvadd2.p . . . . . 6 + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
101, 2, 3, 4, 5, 9, 7dvhfplusr 41103 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = + )
11103ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (+g‘(Scalar‘𝑈)) = + )
1211oveqd 7422 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (𝑄(+g‘(Scalar‘𝑈))𝑅) = (𝑄 + 𝑅))
1312opeq2d 4856 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨(𝐹𝐺), (𝑄(+g‘(Scalar‘𝑈))𝑅)⟩ = ⟨(𝐹𝐺), (𝑄 + 𝑅)⟩)
148, 13eqtrd 2770 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 + 𝑅)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cop 4607  cmpt 5201  ccom 5658  cfv 6531  (class class class)co 7405  cmpo 7407  +gcplusg 17271  Scalarcsca 17274  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  TEndoctendo 40771  DVecHcdvh 41097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-edring 40776  df-dvech 41098
This theorem is referenced by:  xihopellsmN  41273  dihopellsm  41274
  Copyright terms: Public domain W3C validator