| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopvadd2 | Structured version Visualization version GIF version | ||
| Description: The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd 41112 and/or dvhfplusr 41103. (Contributed by NM, 26-Sep-2014.) |
| Ref | Expression |
|---|---|
| dvhopvadd2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvhopvadd2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvhopvadd2.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvhopvadd2.p | ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| dvhopvadd2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dvhopvadd2.s | ⊢ ✚ = (+g‘𝑈) |
| Ref | Expression |
|---|---|
| dvhopvadd2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 ✚ 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 + 𝑅)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvhopvadd2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvhopvadd2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dvhopvadd2.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | dvhopvadd2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 6 | dvhopvadd2.s | . . 3 ⊢ ✚ = (+g‘𝑈) | |
| 7 | eqid 2735 | . . 3 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dvhopvadd 41112 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 ✚ 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄(+g‘(Scalar‘𝑈))𝑅)〉) |
| 9 | dvhopvadd2.p | . . . . . 6 ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 10 | 1, 2, 3, 4, 5, 9, 7 | dvhfplusr 41103 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = + ) |
| 11 | 10 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (+g‘(Scalar‘𝑈)) = + ) |
| 12 | 11 | oveqd 7422 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (𝑄(+g‘(Scalar‘𝑈))𝑅) = (𝑄 + 𝑅)) |
| 13 | 12 | opeq2d 4856 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → 〈(𝐹 ∘ 𝐺), (𝑄(+g‘(Scalar‘𝑈))𝑅)〉 = 〈(𝐹 ∘ 𝐺), (𝑄 + 𝑅)〉) |
| 14 | 8, 13 | eqtrd 2770 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 ✚ 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 + 𝑅)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 〈cop 4607 ↦ cmpt 5201 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 +gcplusg 17271 Scalarcsca 17274 HLchlt 39368 LHypclh 40003 LTrncltrn 40120 TEndoctendo 40771 DVecHcdvh 41097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-edring 40776 df-dvech 41098 |
| This theorem is referenced by: xihopellsmN 41273 dihopellsm 41274 |
| Copyright terms: Public domain | W3C validator |