Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhfplusr Structured version   Visualization version   GIF version

Theorem dvhfplusr 41063
Description: Ring addition operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvhfplusr.h 𝐻 = (LHyp‘𝐾)
dvhfplusr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhfplusr.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhfplusr.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhfplusr.f 𝐹 = (Scalar‘𝑈)
dvhfplusr.p + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
dvhfplusr.s = (+g𝐹)
Assertion
Ref Expression
dvhfplusr ((𝐾𝑉𝑊𝐻) → = + )
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝐻   𝑓,𝑠,𝑡,𝐾   𝑓,𝑉   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   + (𝑡,𝑓,𝑠)   (𝑡,𝑓,𝑠)   𝑇(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑠)   𝑉(𝑡,𝑠)

Proof of Theorem dvhfplusr
StepHypRef Expression
1 dvhfplusr.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 eqid 2729 . . . . 5 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
3 dvhfplusr.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 dvhfplusr.f . . . . 5 𝐹 = (Scalar‘𝑈)
51, 2, 3, 4dvhsca 41061 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐹 = ((EDRing‘𝐾)‘𝑊))
65fveq2d 6826 . . 3 ((𝐾𝑉𝑊𝐻) → (+g𝐹) = (+g‘((EDRing‘𝐾)‘𝑊)))
7 dvhfplusr.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dvhfplusr.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 eqid 2729 . . . 4 (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊))
101, 7, 8, 2, 9erngfplus 40781 . . 3 ((𝐾𝑉𝑊𝐻) → (+g‘((EDRing‘𝐾)‘𝑊)) = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
116, 10eqtrd 2764 . 2 ((𝐾𝑉𝑊𝐻) → (+g𝐹) = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
12 dvhfplusr.s . 2 = (+g𝐹)
13 dvhfplusr.p . 2 + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
1411, 12, 133eqtr4g 2789 1 ((𝐾𝑉𝑊𝐻) → = + )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5173  ccom 5623  cfv 6482  cmpo 7351  +gcplusg 17161  Scalarcsca 17164  LHypclh 39963  LTrncltrn 40080  TEndoctendo 40731  EDRingcedring 40732  DVecHcdvh 41057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-edring 40736  df-dvech 41058
This theorem is referenced by:  dvhopvadd2  41073  dvhvaddcl  41074  dvhvaddcomN  41075  dvh0g  41090  diblss  41149  diblsmopel  41150  dicvaddcl  41169  cdlemn6  41181  dihopelvalcpre  41227
  Copyright terms: Public domain W3C validator