![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhfplusr | Structured version Visualization version GIF version |
Description: Ring addition operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
Ref | Expression |
---|---|
dvhfplusr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhfplusr.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhfplusr.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhfplusr.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhfplusr.f | ⊢ 𝐹 = (Scalar‘𝑈) |
dvhfplusr.p | ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
dvhfplusr.s | ⊢ ✚ = (+g‘𝐹) |
Ref | Expression |
---|---|
dvhfplusr | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ✚ = + ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhfplusr.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2737 | . . . . 5 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
3 | dvhfplusr.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | dvhfplusr.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑈) | |
5 | 1, 2, 3, 4 | dvhsca 41079 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐹 = ((EDRing‘𝐾)‘𝑊)) |
6 | 5 | fveq2d 6918 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (+g‘𝐹) = (+g‘((EDRing‘𝐾)‘𝑊))) |
7 | dvhfplusr.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | dvhfplusr.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
9 | eqid 2737 | . . . 4 ⊢ (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊)) | |
10 | 1, 7, 8, 2, 9 | erngfplus 40799 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (+g‘((EDRing‘𝐾)‘𝑊)) = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
11 | 6, 10 | eqtrd 2777 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (+g‘𝐹) = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
12 | dvhfplusr.s | . 2 ⊢ ✚ = (+g‘𝐹) | |
13 | dvhfplusr.p | . 2 ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
14 | 11, 12, 13 | 3eqtr4g 2802 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ✚ = + ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5234 ∘ ccom 5697 ‘cfv 6569 ∈ cmpo 7440 +gcplusg 17307 Scalarcsca 17310 LHypclh 39981 LTrncltrn 40098 TEndoctendo 40749 EDRingcedring 40750 DVecHcdvh 41075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-struct 17190 df-slot 17225 df-ndx 17237 df-base 17255 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-edring 40754 df-dvech 41076 |
This theorem is referenced by: dvhopvadd2 41091 dvhvaddcl 41092 dvhvaddcomN 41093 dvh0g 41108 diblss 41167 diblsmopel 41168 dicvaddcl 41187 cdlemn6 41199 dihopelvalcpre 41245 |
Copyright terms: Public domain | W3C validator |