![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem36 | Structured version Visualization version GIF version |
Description: The π-th derivative of πΉ applied to π½ is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem36.s | β’ (π β π β {β, β}) |
etransclem36.x | β’ (π β π β ((TopOpenββfld) βΎt π)) |
etransclem36.p | β’ (π β π β β) |
etransclem36.m | β’ (π β π β β0) |
etransclem36.f | β’ πΉ = (π₯ β π β¦ ((π₯β(π β 1)) Β· βπ β (1...π)((π₯ β π)βπ))) |
etransclem36.n | β’ (π β π β β0) |
etransclem36.h | β’ π» = (π β (0...π) β¦ (π₯ β π β¦ ((π₯ β π)βif(π = 0, (π β 1), π)))) |
etransclem36.jx | β’ (π β π½ β π) |
etransclem36.jz | β’ (π β π½ β β€) |
etransclem36.10 | β’ πΆ = (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
Ref | Expression |
---|---|
etransclem36 | β’ (π β (((π Dπ πΉ)βπ)βπ½) β β€) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem36.s | . . 3 β’ (π β π β {β, β}) | |
2 | etransclem36.x | . . 3 β’ (π β π β ((TopOpenββfld) βΎt π)) | |
3 | etransclem36.p | . . 3 β’ (π β π β β) | |
4 | etransclem36.m | . . 3 β’ (π β π β β0) | |
5 | etransclem36.f | . . 3 β’ πΉ = (π₯ β π β¦ ((π₯β(π β 1)) Β· βπ β (1...π)((π₯ β π)βπ))) | |
6 | etransclem36.n | . . 3 β’ (π β π β β0) | |
7 | etransclem36.h | . . 3 β’ π» = (π β (0...π) β¦ (π₯ β π β¦ ((π₯ β π)βif(π = 0, (π β 1), π)))) | |
8 | etransclem36.10 | . . 3 β’ πΆ = (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) | |
9 | etransclem36.jx | . . 3 β’ (π β π½ β π) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | etransclem31 45281 | . 2 β’ (π β (((π Dπ πΉ)βπ)βπ½) = Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (π½β((π β 1) β (πβ0))))) Β· βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π½ β π)β(π β (πβπ)))))))) |
11 | 8, 6 | etransclem16 45266 | . . 3 β’ (π β (πΆβπ) β Fin) |
12 | 3 | adantr 480 | . . . 4 β’ ((π β§ π β (πΆβπ)) β π β β) |
13 | 4 | adantr 480 | . . . 4 β’ ((π β§ π β (πΆβπ)) β π β β0) |
14 | 6 | adantr 480 | . . . 4 β’ ((π β§ π β (πΆβπ)) β π β β0) |
15 | etransclem36.jz | . . . . 5 β’ (π β π½ β β€) | |
16 | 15 | adantr 480 | . . . 4 β’ ((π β§ π β (πΆβπ)) β π½ β β€) |
17 | etransclem11 45261 | . . . . 5 β’ (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) = (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) | |
18 | etransclem11 45261 | . . . . 5 β’ (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) = (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) | |
19 | 8, 17, 18 | 3eqtri 2763 | . . . 4 β’ πΆ = (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
20 | simpr 484 | . . . 4 β’ ((π β§ π β (πΆβπ)) β π β (πΆβπ)) | |
21 | 12, 13, 14, 16, 19, 20 | etransclem26 45276 | . . 3 β’ ((π β§ π β (πΆβπ)) β (((!βπ) / βπ β (0...π)(!β(πβπ))) Β· (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (π½β((π β 1) β (πβ0))))) Β· βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π½ β π)β(π β (πβπ))))))) β β€) |
22 | 11, 21 | fsumzcl 15686 | . 2 β’ (π β Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (π½β((π β 1) β (πβ0))))) Β· βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π½ β π)β(π β (πβπ))))))) β β€) |
23 | 10, 22 | eqeltrd 2832 | 1 β’ (π β (((π Dπ πΉ)βπ)βπ½) β β€) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 {crab 3431 ifcif 4529 {cpr 4631 class class class wbr 5149 β¦ cmpt 5232 βcfv 6544 (class class class)co 7412 βm cmap 8823 βcc 11111 βcr 11112 0cc0 11113 1c1 11114 Β· cmul 11118 < clt 11253 β cmin 11449 / cdiv 11876 βcn 12217 β0cn0 12477 β€cz 12563 ...cfz 13489 βcexp 14032 !cfa 14238 Ξ£csu 15637 βcprod 15854 βΎt crest 17371 TopOpenctopn 17372 βfldccnfld 21145 Dπ cdvn 25614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-er 8706 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-prod 15855 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-lp 22861 df-perf 22862 df-cn 22952 df-cnp 22953 df-haus 23040 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-tms 24049 df-cncf 24619 df-limc 25616 df-dv 25617 df-dvn 25618 |
This theorem is referenced by: etransclem42 45292 |
Copyright terms: Public domain | W3C validator |