| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem36 | Structured version Visualization version GIF version | ||
| Description: The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem36.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| etransclem36.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| etransclem36.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| etransclem36.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| etransclem36.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
| etransclem36.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| etransclem36.h | ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
| etransclem36.jx | ⊢ (𝜑 → 𝐽 ∈ 𝑋) |
| etransclem36.jz | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| etransclem36.10 | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
| Ref | Expression |
|---|---|
| etransclem36 | ⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | etransclem36.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | etransclem36.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 3 | etransclem36.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 4 | etransclem36.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 5 | etransclem36.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) | |
| 6 | etransclem36.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 7 | etransclem36.h | . . 3 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
| 8 | etransclem36.10 | . . 3 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) | |
| 9 | etransclem36.jx | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑋) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | etransclem31 46294 | . 2 ⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) |
| 11 | 8, 6 | etransclem16 46279 | . . 3 ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) |
| 12 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑃 ∈ ℕ) |
| 13 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑀 ∈ ℕ0) |
| 14 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑁 ∈ ℕ0) |
| 15 | etransclem36.jz | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝐽 ∈ ℤ) |
| 17 | etransclem11 46274 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) | |
| 18 | etransclem11 46274 | . . . . 5 ⊢ (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑒‘𝑗) = 𝑛}) | |
| 19 | 8, 17, 18 | 3eqtri 2762 | . . . 4 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑒‘𝑗) = 𝑛}) |
| 20 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ (𝐶‘𝑁)) | |
| 21 | 12, 13, 14, 16, 19, 20 | etransclem26 46289 | . . 3 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) ∈ ℤ) |
| 22 | 11, 21 | fsumzcl 15751 | . 2 ⊢ (𝜑 → Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) ∈ ℤ) |
| 23 | 10, 22 | eqeltrd 2834 | 1 ⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 ifcif 4500 {cpr 4603 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 · cmul 11134 < clt 11269 − cmin 11466 / cdiv 11894 ℕcn 12240 ℕ0cn0 12501 ℤcz 12588 ...cfz 13524 ↑cexp 14079 !cfa 14291 Σcsu 15702 ∏cprod 15919 ↾t crest 17434 TopOpenctopn 17435 ℂfldccnfld 21315 D𝑛 cdvn 25817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-prod 15920 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 df-dvn 25821 |
| This theorem is referenced by: etransclem42 46305 |
| Copyright terms: Public domain | W3C validator |