| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucorid2 | Structured version Visualization version GIF version | ||
| Description: Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| fucolid.p | ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) |
| fucolid.i | ⊢ 𝐼 = (Id‘𝑄) |
| fucorid.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucorid.a | ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻)) |
| fucorid.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| fucorid2 | ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝐴 ∘ (1st ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucolid.p | . . 3 ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) | |
| 2 | fucolid.i | . . 3 ⊢ 𝐼 = (Id‘𝑄) | |
| 3 | fucorid.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 4 | fucorid.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻)) | |
| 5 | fucorid.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 6 | 1, 2, 3, 4, 5 | fucorid 49324 | . 2 ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝐴‘((1st ‘𝐹)‘𝑥)))) |
| 7 | eqid 2729 | . . . . 5 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 8 | 7, 4 | nat1st2nd 17892 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉(𝐷 Nat 𝐸)〈(1st ‘𝐻), (2nd ‘𝐻)〉)) |
| 9 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 10 | 7, 8, 9 | natfn 17895 | . . . 4 ⊢ (𝜑 → 𝐴 Fn (Base‘𝐷)) |
| 11 | dffn2 6672 | . . . 4 ⊢ (𝐴 Fn (Base‘𝐷) ↔ 𝐴:(Base‘𝐷)⟶V) | |
| 12 | 10, 11 | sylib 218 | . . 3 ⊢ (𝜑 → 𝐴:(Base‘𝐷)⟶V) |
| 13 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 14 | 5 | func1st2nd 49038 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 15 | 13, 9, 14 | funcf1 17804 | . . 3 ⊢ (𝜑 → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
| 16 | fcompt 7087 | . . 3 ⊢ ((𝐴:(Base‘𝐷)⟶V ∧ (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → (𝐴 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝐴‘((1st ‘𝐹)‘𝑥)))) | |
| 17 | 12, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝐴‘((1st ‘𝐹)‘𝑥)))) |
| 18 | 6, 17 | eqtr4d 2767 | 1 ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝐴 ∘ (1st ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 ↦ cmpt 5183 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 Basecbs 17155 Idccid 17602 Func cfunc 17792 Nat cnat 17882 FuncCat cfuc 17883 ∘F cfuco 49278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17605 df-cid 17606 df-func 17796 df-cofu 17798 df-nat 17884 df-fuc 17885 df-fuco 49279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |