| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucorid2 | Structured version Visualization version GIF version | ||
| Description: Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| fucolid.p | ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) |
| fucolid.i | ⊢ 𝐼 = (Id‘𝑄) |
| fucorid.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucorid.a | ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻)) |
| fucorid.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| fucorid2 | ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝐴 ∘ (1st ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucolid.p | . . 3 ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) | |
| 2 | fucolid.i | . . 3 ⊢ 𝐼 = (Id‘𝑄) | |
| 3 | fucorid.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 4 | fucorid.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻)) | |
| 5 | fucorid.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 6 | 1, 2, 3, 4, 5 | fucorid 49079 | . 2 ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝐴‘((1st ‘𝐹)‘𝑥)))) |
| 7 | eqid 2734 | . . . . 5 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 8 | 7, 4 | nat1st2nd 17952 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐺), (2nd ‘𝐺)〉(𝐷 Nat 𝐸)〈(1st ‘𝐻), (2nd ‘𝐻)〉)) |
| 9 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 10 | 7, 8, 9 | natfn 17955 | . . . 4 ⊢ (𝜑 → 𝐴 Fn (Base‘𝐷)) |
| 11 | dffn2 6704 | . . . 4 ⊢ (𝐴 Fn (Base‘𝐷) ↔ 𝐴:(Base‘𝐷)⟶V) | |
| 12 | 10, 11 | sylib 218 | . . 3 ⊢ (𝜑 → 𝐴:(Base‘𝐷)⟶V) |
| 13 | eqid 2734 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 14 | relfunc 17860 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 15 | 1st2ndbr 8035 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 16 | 14, 5, 15 | sylancr 587 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 17 | 13, 9, 16 | funcf1 17864 | . . 3 ⊢ (𝜑 → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
| 18 | fcompt 7119 | . . 3 ⊢ ((𝐴:(Base‘𝐷)⟶V ∧ (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → (𝐴 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝐴‘((1st ‘𝐹)‘𝑥)))) | |
| 19 | 12, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝐴‘((1st ‘𝐹)‘𝑥)))) |
| 20 | 6, 19 | eqtr4d 2772 | 1 ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝐴 ∘ (1st ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3457 〈cop 4605 class class class wbr 5116 ↦ cmpt 5198 ∘ ccom 5655 Rel wrel 5656 Fn wfn 6522 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 1st c1st 7980 2nd c2nd 7981 Basecbs 17213 Idccid 17662 Func cfunc 17852 Nat cnat 17942 FuncCat cfuc 17943 ∘F cfuco 49033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-fz 13514 df-struct 17151 df-slot 17186 df-ndx 17198 df-base 17214 df-hom 17280 df-cco 17281 df-cat 17665 df-cid 17666 df-func 17856 df-cofu 17858 df-nat 17944 df-fuc 17945 df-fuco 49034 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |