![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > precofval2 | Structured version Visualization version GIF version |
Description: Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
Ref | Expression |
---|---|
precofval.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
precofval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
precofval.o | ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄swapF𝑅)))) |
precofval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
precofval.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
precofval.k | ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) |
Ref | Expression |
---|---|
precofval2 | ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | precofval.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
2 | precofval.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
3 | precofval.o | . . 3 ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄swapF𝑅)))) | |
4 | precofval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
5 | precofval.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
6 | precofval.k | . . 3 ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) | |
7 | 1, 2, 3, 4, 5, 6 | precofval 49035 | . 2 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |
8 | eqid 2736 | . . . . . . . 8 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
9 | id 22 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) | |
10 | 8, 9 | nat1st2nd 17995 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 ∈ (〈(1st ‘𝑔), (2nd ‘𝑔)〉(𝐷 Nat 𝐸)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
11 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
12 | 8, 10, 11 | natfn 17998 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 Fn (Base‘𝐷)) |
13 | dffn2 6736 | . . . . . . 7 ⊢ (𝑎 Fn (Base‘𝐷) ↔ 𝑎:(Base‘𝐷)⟶V) | |
14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎:(Base‘𝐷)⟶V) |
15 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
16 | relfunc 17903 | . . . . . . . 8 ⊢ Rel (𝐶 Func 𝐷) | |
17 | 1st2ndbr 8063 | . . . . . . . 8 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
18 | 16, 4, 17 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
19 | 15, 11, 18 | funcf1 17907 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
20 | fcompt 7151 | . . . . . 6 ⊢ ((𝑎:(Base‘𝐷)⟶V ∧ (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → (𝑎 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) | |
21 | 14, 19, 20 | syl2anr 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (𝑎 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) |
22 | 21 | mpteq2dva 5240 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥))))) |
23 | 22 | mpoeq3dv 7510 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹)))) = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))) |
24 | 23 | opeq2d 4878 | . 2 ⊢ (𝜑 → 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |
25 | 7, 24 | eqtr4d 2779 | 1 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3479 〈cop 4630 class class class wbr 5141 ↦ cmpt 5223 ∘ ccom 5687 Rel wrel 5688 Fn wfn 6554 ⟶wf 6555 ‘cfv 6559 (class class class)co 7429 ∈ cmpo 7431 1st c1st 8008 2nd c2nd 8009 Basecbs 17243 Catccat 17703 Func cfunc 17895 ∘func ccofu 17897 Nat cnat 17985 FuncCat cfuc 17986 curryF ccurf 18251 swapFcswapf 48938 ∘F cfuco 48984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-er 8741 df-map 8864 df-ixp 8934 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17244 df-hom 17317 df-cco 17318 df-cat 17707 df-cid 17708 df-func 17899 df-cofu 17901 df-nat 17987 df-fuc 17988 df-xpc 18213 df-curf 18255 df-swapf 48939 df-fuco 48985 |
This theorem is referenced by: precoffunc 49039 |
Copyright terms: Public domain | W3C validator |