| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofval2 | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| precofval.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| precofval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| precofval.o | ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) |
| precofval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| precofval.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| precofval.k | ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) |
| Ref | Expression |
|---|---|
| precofval2 | ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precofval.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 2 | precofval.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 3 | precofval.o | . . 3 ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) | |
| 4 | precofval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 5 | precofval.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 6 | precofval.k | . . 3 ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) | |
| 7 | 1, 2, 3, 4, 5, 6 | precofval 49399 | . 2 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |
| 8 | eqid 2731 | . . . . . . . 8 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 9 | id 22 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) | |
| 10 | 8, 9 | nat1st2nd 17856 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 ∈ (〈(1st ‘𝑔), (2nd ‘𝑔)〉(𝐷 Nat 𝐸)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
| 11 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 12 | 8, 10, 11 | natfn 17859 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 Fn (Base‘𝐷)) |
| 13 | dffn2 6648 | . . . . . . 7 ⊢ (𝑎 Fn (Base‘𝐷) ↔ 𝑎:(Base‘𝐷)⟶V) | |
| 14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎:(Base‘𝐷)⟶V) |
| 15 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 16 | 4 | func1st2nd 49108 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 17 | 15, 11, 16 | funcf1 17768 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
| 18 | fcompt 7061 | . . . . . 6 ⊢ ((𝑎:(Base‘𝐷)⟶V ∧ (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → (𝑎 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) | |
| 19 | 14, 17, 18 | syl2anr 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (𝑎 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) |
| 20 | 19 | mpteq2dva 5179 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥))))) |
| 21 | 20 | mpoeq3dv 7420 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹)))) = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))) |
| 22 | 21 | opeq2d 4827 | . 2 ⊢ (𝜑 → 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |
| 23 | 7, 22 | eqtr4d 2769 | 1 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 ↦ cmpt 5167 ∘ ccom 5615 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7914 2nd c2nd 7915 Basecbs 17115 Catccat 17565 Func cfunc 17756 ∘func ccofu 17758 Nat cnat 17846 FuncCat cfuc 17847 curryF ccurf 18111 swapF cswapf 49291 ∘F cfuco 49348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-cat 17569 df-cid 17570 df-func 17760 df-cofu 17762 df-nat 17848 df-fuc 17849 df-xpc 18073 df-curf 18115 df-swapf 49292 df-fuco 49349 |
| This theorem is referenced by: precofval3 49403 |
| Copyright terms: Public domain | W3C validator |