| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofval2 | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| precofval.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| precofval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| precofval.o | ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) |
| precofval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| precofval.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| precofval.k | ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) |
| Ref | Expression |
|---|---|
| precofval2 | ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precofval.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 2 | precofval.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 3 | precofval.o | . . 3 ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) | |
| 4 | precofval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 5 | precofval.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 6 | precofval.k | . . 3 ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) | |
| 7 | 1, 2, 3, 4, 5, 6 | precofval 49329 | . 2 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |
| 8 | eqid 2729 | . . . . . . . 8 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 9 | id 22 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) | |
| 10 | 8, 9 | nat1st2nd 17892 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 ∈ (〈(1st ‘𝑔), (2nd ‘𝑔)〉(𝐷 Nat 𝐸)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 12 | 8, 10, 11 | natfn 17895 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 Fn (Base‘𝐷)) |
| 13 | dffn2 6672 | . . . . . . 7 ⊢ (𝑎 Fn (Base‘𝐷) ↔ 𝑎:(Base‘𝐷)⟶V) | |
| 14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎:(Base‘𝐷)⟶V) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 16 | 4 | func1st2nd 49038 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 17 | 15, 11, 16 | funcf1 17804 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
| 18 | fcompt 7087 | . . . . . 6 ⊢ ((𝑎:(Base‘𝐷)⟶V ∧ (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → (𝑎 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) | |
| 19 | 14, 17, 18 | syl2anr 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (𝑎 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) |
| 20 | 19 | mpteq2dva 5195 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥))))) |
| 21 | 20 | mpoeq3dv 7448 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹)))) = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))) |
| 22 | 21 | opeq2d 4840 | . 2 ⊢ (𝜑 → 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |
| 23 | 7, 22 | eqtr4d 2767 | 1 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 ↦ cmpt 5183 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 Basecbs 17155 Catccat 17601 Func cfunc 17792 ∘func ccofu 17794 Nat cnat 17882 FuncCat cfuc 17883 curryF ccurf 18147 swapF cswapf 49221 ∘F cfuco 49278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17605 df-cid 17606 df-func 17796 df-cofu 17798 df-nat 17884 df-fuc 17885 df-xpc 18109 df-curf 18151 df-swapf 49222 df-fuco 49279 |
| This theorem is referenced by: precofval3 49333 |
| Copyright terms: Public domain | W3C validator |