| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofval2 | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| precofval.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| precofval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| precofval.o | ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) |
| precofval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| precofval.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| precofval.k | ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) |
| Ref | Expression |
|---|---|
| precofval2 | ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precofval.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 2 | precofval.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 3 | precofval.o | . . 3 ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) | |
| 4 | precofval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 5 | precofval.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 6 | precofval.k | . . 3 ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) | |
| 7 | 1, 2, 3, 4, 5, 6 | precofval 49352 | . 2 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |
| 8 | eqid 2729 | . . . . . . . 8 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 9 | id 22 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) | |
| 10 | 8, 9 | nat1st2nd 17861 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 ∈ (〈(1st ‘𝑔), (2nd ‘𝑔)〉(𝐷 Nat 𝐸)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 12 | 8, 10, 11 | natfn 17864 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎 Fn (Base‘𝐷)) |
| 13 | dffn2 6654 | . . . . . . 7 ⊢ (𝑎 Fn (Base‘𝐷) ↔ 𝑎:(Base‘𝐷)⟶V) | |
| 14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) → 𝑎:(Base‘𝐷)⟶V) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 16 | 4 | func1st2nd 49061 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 17 | 15, 11, 16 | funcf1 17773 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
| 18 | fcompt 7067 | . . . . . 6 ⊢ ((𝑎:(Base‘𝐷)⟶V ∧ (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → (𝑎 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) | |
| 19 | 14, 17, 18 | syl2anr 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (𝑎 ∘ (1st ‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) |
| 20 | 19 | mpteq2dva 5185 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥))))) |
| 21 | 20 | mpoeq3dv 7428 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹)))) = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))) |
| 22 | 21 | opeq2d 4831 | . 2 ⊢ (𝜑 → 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |
| 23 | 7, 22 | eqtr4d 2767 | 1 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ↦ cmpt 5173 ∘ ccom 5623 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 Basecbs 17120 Catccat 17570 Func cfunc 17761 ∘func ccofu 17763 Nat cnat 17851 FuncCat cfuc 17852 curryF ccurf 18116 swapF cswapf 49244 ∘F cfuco 49301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-func 17765 df-cofu 17767 df-nat 17853 df-fuc 17854 df-xpc 18078 df-curf 18120 df-swapf 49245 df-fuco 49302 |
| This theorem is referenced by: precofval3 49356 |
| Copyright terms: Public domain | W3C validator |