| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1f1 | Structured version Visualization version GIF version | ||
| Description: The object part of the diagonal functor is 1-1 if 𝐵 is non-empty. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag1f1.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diag1f1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag1f1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag1f1.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag1f1.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag1f1.0 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| Ref | Expression |
|---|---|
| diag1f1 | ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 2 | eqid 2736 | . . . 4 ⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) | |
| 3 | 2 | fucbas 17981 | . . 3 ⊢ (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶)) |
| 4 | diag1f1.l | . . . . 5 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 5 | diag1f1.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | diag1f1.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 7 | 4, 5, 6, 2 | diagcl 18258 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 8 | 7 | func1st2nd 49010 | . . 3 ⊢ (𝜑 → (1st ‘𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd ‘𝐿)) |
| 9 | 1, 3, 8 | funcf1 17884 | . 2 ⊢ (𝜑 → (1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶)) |
| 10 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐶 ∈ Cat) |
| 11 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐷 ∈ Cat) |
| 12 | diag1f1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 13 | diag1f1.0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐵 ≠ ∅) |
| 15 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
| 16 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
| 17 | eqid 2736 | . . . 4 ⊢ ((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘𝑥) | |
| 18 | eqid 2736 | . . . 4 ⊢ ((1st ‘𝐿)‘𝑦) = ((1st ‘𝐿)‘𝑦) | |
| 19 | 4, 10, 11, 1, 12, 14, 15, 16, 17, 18 | diag1f1lem 49184 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘𝑦) → 𝑥 = 𝑦)) |
| 20 | 19 | ralrimivva 3188 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘𝑦) → 𝑥 = 𝑦)) |
| 21 | dff13 7252 | . 2 ⊢ ((1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶) ↔ ((1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘𝑦) → 𝑥 = 𝑦))) | |
| 22 | 9, 20, 21 | sylanbrc 583 | 1 ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∅c0 4313 ⟶wf 6532 –1-1→wf1 6533 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 Basecbs 17233 Catccat 17681 Func cfunc 17872 FuncCat cfuc 17963 Δfunccdiag 18229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-func 17876 df-nat 17964 df-fuc 17965 df-xpc 18189 df-1stf 18190 df-curf 18231 df-diag 18233 |
| This theorem is referenced by: eufunclem 49373 diag1f1o 49386 |
| Copyright terms: Public domain | W3C validator |