| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfoppc2 | Structured version Visualization version GIF version | ||
| Description: The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfoppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppfoppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| oppfoppc2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| oppfoppc2 | ⊢ (𝜑 → (oppFunc‘𝐹) ∈ (𝑂 Func 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17873 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | oppfoppc2.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2nd 8036 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | 4 | fveq2d 6879 | . . 3 ⊢ (𝜑 → (oppFunc‘𝐹) = (oppFunc‘〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 6 | df-ov 7406 | . . 3 ⊢ ((1st ‘𝐹)oppFunc(2nd ‘𝐹)) = (oppFunc‘〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 7 | 5, 6 | eqtr4di 2788 | . 2 ⊢ (𝜑 → (oppFunc‘𝐹) = ((1st ‘𝐹)oppFunc(2nd ‘𝐹))) |
| 8 | oppfoppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 9 | oppfoppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 10 | 2 | func1st2nd 48991 | . . 3 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 11 | 8, 9, 10 | oppfoppc 49032 | . 2 ⊢ (𝜑 → ((1st ‘𝐹)oppFunc(2nd ‘𝐹)) ∈ (𝑂 Func 𝑃)) |
| 12 | 7, 11 | eqeltrd 2834 | 1 ⊢ (𝜑 → (oppFunc‘𝐹) ∈ (𝑂 Func 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cop 4607 Rel wrel 5659 ‘cfv 6530 (class class class)co 7403 1st c1st 7984 2nd c2nd 7985 oppCatcoppc 17721 Func cfunc 17865 oppFunccoppf 49019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-hom 17293 df-cco 17294 df-cat 17678 df-cid 17679 df-oppc 17722 df-func 17869 df-oppf 49020 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |