| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfoppc2 | Structured version Visualization version GIF version | ||
| Description: The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfoppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppfoppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| oppfoppc2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| oppfoppc2 | ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17787 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | oppfoppc2.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2nd 7981 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | 4 | fveq2d 6830 | . . 3 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 6 | df-ov 7356 | . . 3 ⊢ ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 7 | 5, 6 | eqtr4di 2782 | . 2 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ((1st ‘𝐹) oppFunc (2nd ‘𝐹))) |
| 8 | oppfoppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 9 | oppfoppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 10 | 2 | func1st2nd 49049 | . . 3 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 11 | 8, 9, 10 | oppfoppc 49114 | . 2 ⊢ (𝜑 → ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) ∈ (𝑂 Func 𝑃)) |
| 12 | 7, 11 | eqeltrd 2828 | 1 ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 oppCatcoppc 17635 Func cfunc 17779 oppFunc coppf 49095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-hom 17203 df-cco 17204 df-cat 17592 df-cid 17593 df-oppc 17636 df-func 17783 df-oppf 49096 |
| This theorem is referenced by: oppff1 49121 oppfdiag1 49387 oppfdiag 49389 lmddu 49640 cmddu 49641 lmdran 49644 |
| Copyright terms: Public domain | W3C validator |