| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfoppc2 | Structured version Visualization version GIF version | ||
| Description: The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfoppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppfoppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| oppfoppc2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| oppfoppc2 | ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17775 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | oppfoppc2.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2nd 7977 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | 4 | fveq2d 6832 | . . 3 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 6 | df-ov 7355 | . . 3 ⊢ ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 7 | 5, 6 | eqtr4di 2784 | . 2 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ((1st ‘𝐹) oppFunc (2nd ‘𝐹))) |
| 8 | oppfoppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 9 | oppfoppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 10 | 2 | func1st2nd 49182 | . . 3 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 11 | 8, 9, 10 | oppfoppc 49247 | . 2 ⊢ (𝜑 → ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) ∈ (𝑂 Func 𝑃)) |
| 12 | 7, 11 | eqeltrd 2831 | 1 ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4581 Rel wrel 5624 ‘cfv 6487 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 oppCatcoppc 17623 Func cfunc 17767 oppFunc coppf 49228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-hom 17191 df-cco 17192 df-cat 17580 df-cid 17581 df-oppc 17624 df-func 17771 df-oppf 49229 |
| This theorem is referenced by: oppff1 49254 oppfdiag1 49520 oppfdiag 49522 lmddu 49773 cmddu 49774 lmdran 49777 |
| Copyright terms: Public domain | W3C validator |