Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climreclmpt Structured version   Visualization version   GIF version

Theorem climreclmpt 45595
Description: The limit of B convergent real sequence is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climreclmpt.k 𝑘𝜑
climreclmpt.m (𝜑𝑀 ∈ ℤ)
climreclmpt.z 𝑍 = (ℤ𝑀)
climreclmpt.a ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
climreclmpt.b (𝜑 → (𝑘𝑍𝐴) ⇝ 𝐵)
Assertion
Ref Expression
climreclmpt (𝜑𝐵 ∈ ℝ)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑀(𝑘)

Proof of Theorem climreclmpt
StepHypRef Expression
1 climreclmpt.k . 2 𝑘𝜑
2 nfmpt1 5274 . 2 𝑘(𝑘𝑍𝐴)
3 climreclmpt.z . 2 𝑍 = (ℤ𝑀)
4 climreclmpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climreclmpt.b . 2 (𝜑 → (𝑘𝑍𝐴) ⇝ 𝐵)
6 eqidd 2741 . . . 4 (𝜑 → (𝑘𝑍𝐴) = (𝑘𝑍𝐴))
7 climreclmpt.a . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
86, 7fvmpt2d 7037 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐴)‘𝑘) = 𝐴)
98, 7eqeltrd 2844 . 2 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐴)‘𝑘) ∈ ℝ)
101, 2, 3, 4, 5, 9climreclf 45575 1 (𝜑𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108   class class class wbr 5166  cmpt 5249  cfv 6568  cr 11177  cz 12633  cuz 12897  cli 15524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764  ax-cnex 11234  ax-resscn 11235  ax-1cn 11236  ax-icn 11237  ax-addcl 11238  ax-addrcl 11239  ax-mulcl 11240  ax-mulrcl 11241  ax-mulcom 11242  ax-addass 11243  ax-mulass 11244  ax-distr 11245  ax-i2m1 11246  ax-1ne0 11247  ax-1rid 11248  ax-rnegex 11249  ax-rrecex 11250  ax-cnre 11251  ax-pre-lttri 11252  ax-pre-lttrn 11253  ax-pre-ltadd 11254  ax-pre-mulgt0 11255  ax-pre-sup 11256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5650  df-we 5652  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-ord 6393  df-on 6394  df-lim 6395  df-suc 6396  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-riota 7399  df-ov 7446  df-oprab 7447  df-mpo 7448  df-om 7898  df-2nd 8025  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-er 8757  df-pm 8881  df-en 8998  df-dom 8999  df-sdom 9000  df-sup 9505  df-inf 9506  df-pnf 11320  df-mnf 11321  df-xr 11322  df-ltxr 11323  df-le 11324  df-sub 11516  df-neg 11517  df-div 11942  df-nn 12288  df-2 12350  df-3 12351  df-n0 12548  df-z 12634  df-uz 12898  df-rp 13052  df-fl 13837  df-seq 14047  df-exp 14107  df-cj 15142  df-re 15143  df-im 15144  df-sqrt 15278  df-abs 15279  df-clim 15528  df-rlim 15529
This theorem is referenced by:  smflimsuplem4  46734
  Copyright terms: Public domain W3C validator