MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdif1 Structured version   Visualization version   GIF version

Theorem fzdif1 13508
Description: Split the first element of a finite set of sequential integers. More generic than fzpred 13475. Analogous to fzdif2 32734. (Contributed by AV, 12-Sep-2025.)
Assertion
Ref Expression
fzdif1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))

Proof of Theorem fzdif1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3913 . . 3 (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
2 elsng 4591 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → (𝑥 ∈ {𝑀} ↔ 𝑥 = 𝑀))
32necon3bbid 2962 . . . . 5 (𝑥 ∈ (𝑀...𝑁) → (¬ 𝑥 ∈ {𝑀} ↔ 𝑥𝑀))
4 fzne1 13507 . . . . 5 ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥𝑀) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
53, 4sylbida 592 . . . 4 ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
6 eluzel2 12740 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
76uzidd 12751 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ𝑀))
8 peano2uz 12802 . . . . . . . 8 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
9 fzss1 13466 . . . . . . . 8 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1110sselda 3935 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
12 elfz2 13417 . . . . . . . . 9 (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)))
136zred 12580 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
1413adantl 481 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
15 simp3 1138 . . . . . . . . . . . . . . . . 17 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
16 zltp1le 12525 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
176, 15, 16syl2anr 597 . . . . . . . . . . . . . . . 16 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
1817biimprd 248 . . . . . . . . . . . . . . 15 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))
1918a1d 25 . . . . . . . . . . . . . 14 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥)))
2019ex 412 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))))
2120com24 95 . . . . . . . . . . . 12 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑥 → (𝑥𝑁 → (𝑁 ∈ (ℤ𝑀) → 𝑀 < 𝑥))))
2221imp42 426 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 < 𝑥)
2314, 22gtned 11251 . . . . . . . . . 10 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑥𝑀)
2423ex 412 . . . . . . . . 9 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2512, 24sylbi 217 . . . . . . . 8 (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2625impcom 407 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥𝑀)
27 nelsn 4618 . . . . . . 7 (𝑥𝑀 → ¬ 𝑥 ∈ {𝑀})
2826, 27syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → ¬ 𝑥 ∈ {𝑀})
2911, 28jca 511 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
3029ex 412 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀})))
315, 30impbid2 226 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
321, 31bitrid 283 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
3332eqrdv 2727 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3900  wss 3903  {csn 4577   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cz 12471  cuz 12735  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  fz0dif1  13509
  Copyright terms: Public domain W3C validator