MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdif1 Structured version   Visualization version   GIF version

Theorem fzdif1 13620
Description: Split the first element of a finite set of sequential integers. More generic than fzpred 13587. Analogous to fzdif2 32713. (Contributed by AV, 12-Sep-2025.)
Assertion
Ref Expression
fzdif1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))

Proof of Theorem fzdif1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3936 . . 3 (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
2 elsng 4615 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → (𝑥 ∈ {𝑀} ↔ 𝑥 = 𝑀))
32necon3bbid 2969 . . . . 5 (𝑥 ∈ (𝑀...𝑁) → (¬ 𝑥 ∈ {𝑀} ↔ 𝑥𝑀))
4 fzne1 13619 . . . . 5 ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥𝑀) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
53, 4sylbida 592 . . . 4 ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
6 eluzel2 12855 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
76uzidd 12866 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ𝑀))
8 peano2uz 12915 . . . . . . . 8 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
9 fzss1 13578 . . . . . . . 8 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1110sselda 3958 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
12 elfz2 13529 . . . . . . . . 9 (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)))
136zred 12695 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
1413adantl 481 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
15 simp3 1138 . . . . . . . . . . . . . . . . 17 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
16 zltp1le 12640 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
176, 15, 16syl2anr 597 . . . . . . . . . . . . . . . 16 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
1817biimprd 248 . . . . . . . . . . . . . . 15 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))
1918a1d 25 . . . . . . . . . . . . . 14 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥)))
2019ex 412 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))))
2120com24 95 . . . . . . . . . . . 12 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑥 → (𝑥𝑁 → (𝑁 ∈ (ℤ𝑀) → 𝑀 < 𝑥))))
2221imp42 426 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 < 𝑥)
2314, 22gtned 11368 . . . . . . . . . 10 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑥𝑀)
2423ex 412 . . . . . . . . 9 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2512, 24sylbi 217 . . . . . . . 8 (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2625impcom 407 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥𝑀)
27 nelsn 4642 . . . . . . 7 (𝑥𝑀 → ¬ 𝑥 ∈ {𝑀})
2826, 27syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → ¬ 𝑥 ∈ {𝑀})
2911, 28jca 511 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
3029ex 412 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀})))
315, 30impbid2 226 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
321, 31bitrid 283 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
3332eqrdv 2733 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cdif 3923  wss 3926  {csn 4601   class class class wbr 5119  cfv 6530  (class class class)co 7403  cr 11126  1c1 11128   + caddc 11130   < clt 11267  cle 11268  cz 12586  cuz 12850  ...cfz 13522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523
This theorem is referenced by:  fz0dif1  13621
  Copyright terms: Public domain W3C validator