MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdif1 Structured version   Visualization version   GIF version

Theorem fzdif1 13573
Description: Split the first element of a finite set of sequential integers. More generic than fzpred 13540. Analogous to fzdif2 32720. (Contributed by AV, 12-Sep-2025.)
Assertion
Ref Expression
fzdif1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))

Proof of Theorem fzdif1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3927 . . 3 (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
2 elsng 4606 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → (𝑥 ∈ {𝑀} ↔ 𝑥 = 𝑀))
32necon3bbid 2963 . . . . 5 (𝑥 ∈ (𝑀...𝑁) → (¬ 𝑥 ∈ {𝑀} ↔ 𝑥𝑀))
4 fzne1 13572 . . . . 5 ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥𝑀) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
53, 4sylbida 592 . . . 4 ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
6 eluzel2 12805 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
76uzidd 12816 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ𝑀))
8 peano2uz 12867 . . . . . . . 8 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
9 fzss1 13531 . . . . . . . 8 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1110sselda 3949 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
12 elfz2 13482 . . . . . . . . 9 (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)))
136zred 12645 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
1413adantl 481 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
15 simp3 1138 . . . . . . . . . . . . . . . . 17 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
16 zltp1le 12590 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
176, 15, 16syl2anr 597 . . . . . . . . . . . . . . . 16 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
1817biimprd 248 . . . . . . . . . . . . . . 15 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))
1918a1d 25 . . . . . . . . . . . . . 14 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥)))
2019ex 412 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))))
2120com24 95 . . . . . . . . . . . 12 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑥 → (𝑥𝑁 → (𝑁 ∈ (ℤ𝑀) → 𝑀 < 𝑥))))
2221imp42 426 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 < 𝑥)
2314, 22gtned 11316 . . . . . . . . . 10 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑥𝑀)
2423ex 412 . . . . . . . . 9 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2512, 24sylbi 217 . . . . . . . 8 (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2625impcom 407 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥𝑀)
27 nelsn 4633 . . . . . . 7 (𝑥𝑀 → ¬ 𝑥 ∈ {𝑀})
2826, 27syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → ¬ 𝑥 ∈ {𝑀})
2911, 28jca 511 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
3029ex 412 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀})))
315, 30impbid2 226 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
321, 31bitrid 283 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
3332eqrdv 2728 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cz 12536  cuz 12800  ...cfz 13475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476
This theorem is referenced by:  fz0dif1  13574
  Copyright terms: Public domain W3C validator