MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdif1 Structured version   Visualization version   GIF version

Theorem fzdif1 13641
Description: Split the first element of a finite set of sequential integers. More generic than fzpred 13608. Analogous to fzdif2 32798. (Contributed by AV, 12-Sep-2025.)
Assertion
Ref Expression
fzdif1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))

Proof of Theorem fzdif1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3972 . . 3 (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
2 elsng 4644 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → (𝑥 ∈ {𝑀} ↔ 𝑥 = 𝑀))
32necon3bbid 2975 . . . . 5 (𝑥 ∈ (𝑀...𝑁) → (¬ 𝑥 ∈ {𝑀} ↔ 𝑥𝑀))
4 fzne1 13640 . . . . 5 ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥𝑀) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
53, 4sylbida 592 . . . 4 ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
6 eluzel2 12880 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
76uzidd 12891 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ𝑀))
8 peano2uz 12940 . . . . . . . 8 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
9 fzss1 13599 . . . . . . . 8 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1110sselda 3994 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
12 elfz2 13550 . . . . . . . . 9 (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)))
136zred 12719 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
1413adantl 481 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
15 simp3 1137 . . . . . . . . . . . . . . . . 17 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
16 zltp1le 12664 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
176, 15, 16syl2anr 597 . . . . . . . . . . . . . . . 16 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
1817biimprd 248 . . . . . . . . . . . . . . 15 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))
1918a1d 25 . . . . . . . . . . . . . 14 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥)))
2019ex 412 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))))
2120com24 95 . . . . . . . . . . . 12 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑥 → (𝑥𝑁 → (𝑁 ∈ (ℤ𝑀) → 𝑀 < 𝑥))))
2221imp42 426 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 < 𝑥)
2314, 22gtned 11393 . . . . . . . . . 10 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑥𝑀)
2423ex 412 . . . . . . . . 9 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2512, 24sylbi 217 . . . . . . . 8 (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2625impcom 407 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥𝑀)
27 nelsn 4670 . . . . . . 7 (𝑥𝑀 → ¬ 𝑥 ∈ {𝑀})
2826, 27syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → ¬ 𝑥 ∈ {𝑀})
2911, 28jca 511 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
3029ex 412 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀})))
315, 30impbid2 226 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
321, 31bitrid 283 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
3332eqrdv 2732 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cdif 3959  wss 3962  {csn 4630   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cz 12610  cuz 12875  ...cfz 13543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544
This theorem is referenced by:  fz0dif1  13642
  Copyright terms: Public domain W3C validator