MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdif1 Structured version   Visualization version   GIF version

Theorem fzdif1 13645
Description: Split the first element of a finite set of sequential integers. More generic than fzpred 13612. Analogous to fzdif2 32792. (Contributed by AV, 12-Sep-2025.)
Assertion
Ref Expression
fzdif1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))

Proof of Theorem fzdif1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3961 . . 3 (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
2 elsng 4640 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → (𝑥 ∈ {𝑀} ↔ 𝑥 = 𝑀))
32necon3bbid 2978 . . . . 5 (𝑥 ∈ (𝑀...𝑁) → (¬ 𝑥 ∈ {𝑀} ↔ 𝑥𝑀))
4 fzne1 13644 . . . . 5 ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥𝑀) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
53, 4sylbida 592 . . . 4 ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) → 𝑥 ∈ ((𝑀 + 1)...𝑁))
6 eluzel2 12883 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
76uzidd 12894 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ𝑀))
8 peano2uz 12943 . . . . . . . 8 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
9 fzss1 13603 . . . . . . . 8 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1110sselda 3983 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
12 elfz2 13554 . . . . . . . . 9 (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)))
136zred 12722 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
1413adantl 481 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
15 simp3 1139 . . . . . . . . . . . . . . . . 17 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
16 zltp1le 12667 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
176, 15, 16syl2anr 597 . . . . . . . . . . . . . . . 16 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑀 < 𝑥 ↔ (𝑀 + 1) ≤ 𝑥))
1817biimprd 248 . . . . . . . . . . . . . . 15 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))
1918a1d 25 . . . . . . . . . . . . . 14 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝑀)) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥)))
2019ex 412 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) → (𝑥𝑁 → ((𝑀 + 1) ≤ 𝑥𝑀 < 𝑥))))
2120com24 95 . . . . . . . . . . . 12 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑥 → (𝑥𝑁 → (𝑁 ∈ (ℤ𝑀) → 𝑀 < 𝑥))))
2221imp42 426 . . . . . . . . . . 11 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 < 𝑥)
2314, 22gtned 11396 . . . . . . . . . 10 (((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑥𝑀)
2423ex 412 . . . . . . . . 9 ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑥𝑥𝑁)) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2512, 24sylbi 217 . . . . . . . 8 (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑁 ∈ (ℤ𝑀) → 𝑥𝑀))
2625impcom 407 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → 𝑥𝑀)
27 nelsn 4666 . . . . . . 7 (𝑥𝑀 → ¬ 𝑥 ∈ {𝑀})
2826, 27syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → ¬ 𝑥 ∈ {𝑀})
2911, 28jca 511 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}))
3029ex 412 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀})))
315, 30impbid2 226 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (𝑀...𝑁) ∧ ¬ 𝑥 ∈ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
321, 31bitrid 283 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ ((𝑀...𝑁) ∖ {𝑀}) ↔ 𝑥 ∈ ((𝑀 + 1)...𝑁)))
3332eqrdv 2735 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cdif 3948  wss 3951  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cz 12613  cuz 12878  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  fz0dif1  13646
  Copyright terms: Public domain W3C validator