MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0fz0 Structured version   Visualization version   GIF version

Theorem nn0fz0 13665
Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.)
Assertion
Ref Expression
nn0fz0 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))

Proof of Theorem nn0fz0
StepHypRef Expression
1 id 22 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
2 nn0re 12535 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
32leidd 11829 . . 3 (𝑁 ∈ ℕ0𝑁𝑁)
4 fznn0 13659 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...𝑁) ↔ (𝑁 ∈ ℕ0𝑁𝑁)))
51, 3, 4mpbir2and 713 . 2 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
6 elfz3nn0 13661 . 2 (𝑁 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
75, 6impbii 209 1 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108   class class class wbr 5143  (class class class)co 7431  0cc0 11155  cle 11296  0cn0 12526  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  swrdrlen  14697  pfxid  14722  pfxccat1  14740  pfxpfxid  14747  pfxcctswrd  14748  pfxccatin12  14771  pfxccatid  14779  cshwlen  14837  cshwidxmod  14841  fallfacfac  16081  cayhamlem1  22872  cpmadugsumlemF  22882  wlkepvtx  29678  wlkp1lem7  29697  wlkp1lem8  29698  dfpth2  29749  spthdep  29754  crctcshwlkn0lem6  29835  crctcsh  29844  wwlknllvtx  29866  wwlksnred  29912  wpthswwlks2on  29981  konigsbergiedgw  30267  konigsberglem1  30271  konigsberglem2  30272  konigsberglem3  30273  dlwwlknondlwlknonf1olem1  30383  splfv3  32943  cycpmco2f1  33144  cycpmco2rn  33145  cycpmco2lem3  33148  cycpmco2lem4  33149  cycpmco2lem5  33150  cycpmco2lem6  33151  cycpmco2lem7  33152  cycpmco2  33153  iwrdsplit  34389  fibp1  34403  revpfxsfxrev  35121  poimirlem10  37637  poimirlem17  37644  poimirlem23  37650  poimirlem26  37653  poimirlem27  37654  iccpartiltu  47409  iccpartlt  47411  iccpartleu  47415  iccpartrn  47417  iccelpart  47420  iccpartiun  47421  iccpartdisj  47424  cycl3grtri  47914  usgrexmpl1lem  47980
  Copyright terms: Public domain W3C validator