| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0fz0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| nn0fz0 | ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 2 | nn0re 12401 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 3 | 2 | leidd 11694 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ 𝑁) |
| 4 | fznn0 13526 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...𝑁) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁))) | |
| 5 | 1, 3, 4 | mpbir2and 713 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
| 6 | elfz3nn0 13528 | . 2 ⊢ (𝑁 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
| 7 | 5, 6 | impbii 209 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 0cc0 11017 ≤ cle 11158 ℕ0cn0 12392 ...cfz 13414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 |
| This theorem is referenced by: swrdrlen 14574 pfxid 14599 pfxccat1 14616 pfxpfxid 14623 pfxcctswrd 14624 pfxccatin12 14647 pfxccatid 14655 cshwlen 14713 cshwidxmod 14717 fallfacfac 15959 cayhamlem1 22801 cpmadugsumlemF 22811 wlkepvtx 29658 wlkp1lem7 29677 wlkp1lem8 29678 dfpth2 29728 spthdep 29733 crctcshwlkn0lem6 29814 crctcsh 29823 wwlknllvtx 29845 wwlksnred 29891 wpthswwlks2on 29963 konigsbergiedgw 30249 konigsberglem1 30253 konigsberglem2 30254 konigsberglem3 30255 dlwwlknondlwlknonf1olem1 30365 splfv3 32968 gsummulsubdishift1 33079 gsummulsubdishift2 33080 gsummulsubdishift1s 33081 gsummulsubdishift2s 33082 cycpmco2f1 33134 cycpmco2rn 33135 cycpmco2lem3 33138 cycpmco2lem4 33139 cycpmco2lem5 33140 cycpmco2lem6 33141 cycpmco2lem7 33142 cycpmco2 33143 esplyfvn 33661 iwrdsplit 34472 fibp1 34486 revpfxsfxrev 35232 poimirlem10 37743 poimirlem17 37750 poimirlem23 37756 poimirlem26 37759 poimirlem27 37760 iccpartiltu 47584 iccpartlt 47586 iccpartleu 47590 iccpartrn 47592 iccelpart 47595 iccpartiun 47596 iccpartdisj 47599 upgrimpthslem2 48070 upgrimpths 48071 upgrimcycls 48073 cycl3grtri 48109 usgrexmpl1lem 48183 |
| Copyright terms: Public domain | W3C validator |