| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0fz0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| nn0fz0 | ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 2 | nn0re 12458 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 3 | 2 | leidd 11751 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ 𝑁) |
| 4 | fznn0 13587 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...𝑁) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁))) | |
| 5 | 1, 3, 4 | mpbir2and 713 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
| 6 | elfz3nn0 13589 | . 2 ⊢ (𝑁 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
| 7 | 5, 6 | impbii 209 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 0cc0 11075 ≤ cle 11216 ℕ0cn0 12449 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: swrdrlen 14631 pfxid 14656 pfxccat1 14674 pfxpfxid 14681 pfxcctswrd 14682 pfxccatin12 14705 pfxccatid 14713 cshwlen 14771 cshwidxmod 14775 fallfacfac 16018 cayhamlem1 22760 cpmadugsumlemF 22770 wlkepvtx 29595 wlkp1lem7 29614 wlkp1lem8 29615 dfpth2 29666 spthdep 29671 crctcshwlkn0lem6 29752 crctcsh 29761 wwlknllvtx 29783 wwlksnred 29829 wpthswwlks2on 29898 konigsbergiedgw 30184 konigsberglem1 30188 konigsberglem2 30189 konigsberglem3 30190 dlwwlknondlwlknonf1olem1 30300 splfv3 32887 cycpmco2f1 33088 cycpmco2rn 33089 cycpmco2lem3 33092 cycpmco2lem4 33093 cycpmco2lem5 33094 cycpmco2lem6 33095 cycpmco2lem7 33096 cycpmco2 33097 iwrdsplit 34385 fibp1 34399 revpfxsfxrev 35110 poimirlem10 37631 poimirlem17 37638 poimirlem23 37644 poimirlem26 37647 poimirlem27 37648 iccpartiltu 47427 iccpartlt 47429 iccpartleu 47433 iccpartrn 47435 iccelpart 47438 iccpartiun 47439 iccpartdisj 47442 upgrimpthslem2 47912 upgrimpths 47913 upgrimcycls 47915 cycl3grtri 47950 usgrexmpl1lem 48016 |
| Copyright terms: Public domain | W3C validator |