MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0fz0 Structured version   Visualization version   GIF version

Theorem nn0fz0 13562
Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.)
Assertion
Ref Expression
nn0fz0 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))

Proof of Theorem nn0fz0
StepHypRef Expression
1 id 22 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
2 nn0re 12427 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
32leidd 11720 . . 3 (𝑁 ∈ ℕ0𝑁𝑁)
4 fznn0 13556 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...𝑁) ↔ (𝑁 ∈ ℕ0𝑁𝑁)))
51, 3, 4mpbir2and 713 . 2 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
6 elfz3nn0 13558 . 2 (𝑁 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
75, 6impbii 209 1 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109   class class class wbr 5102  (class class class)co 7369  0cc0 11044  cle 11185  0cn0 12418  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  swrdrlen  14600  pfxid  14625  pfxccat1  14643  pfxpfxid  14650  pfxcctswrd  14651  pfxccatin12  14674  pfxccatid  14682  cshwlen  14740  cshwidxmod  14744  fallfacfac  15987  cayhamlem1  22729  cpmadugsumlemF  22739  wlkepvtx  29562  wlkp1lem7  29581  wlkp1lem8  29582  dfpth2  29632  spthdep  29637  crctcshwlkn0lem6  29718  crctcsh  29727  wwlknllvtx  29749  wwlksnred  29795  wpthswwlks2on  29864  konigsbergiedgw  30150  konigsberglem1  30154  konigsberglem2  30155  konigsberglem3  30156  dlwwlknondlwlknonf1olem1  30266  splfv3  32853  cycpmco2f1  33054  cycpmco2rn  33055  cycpmco2lem3  33058  cycpmco2lem4  33059  cycpmco2lem5  33060  cycpmco2lem6  33061  cycpmco2lem7  33062  cycpmco2  33063  iwrdsplit  34351  fibp1  34365  revpfxsfxrev  35076  poimirlem10  37597  poimirlem17  37604  poimirlem23  37610  poimirlem26  37613  poimirlem27  37614  iccpartiltu  47396  iccpartlt  47398  iccpartleu  47402  iccpartrn  47404  iccelpart  47407  iccpartiun  47408  iccpartdisj  47411  upgrimpthslem2  47881  upgrimpths  47882  upgrimcycls  47884  cycl3grtri  47919  usgrexmpl1lem  47985
  Copyright terms: Public domain W3C validator