| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0fz0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| nn0fz0 | ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 2 | nn0re 12451 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 3 | 2 | leidd 11744 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ 𝑁) |
| 4 | fznn0 13580 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...𝑁) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁))) | |
| 5 | 1, 3, 4 | mpbir2and 713 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
| 6 | elfz3nn0 13582 | . 2 ⊢ (𝑁 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
| 7 | 5, 6 | impbii 209 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 0cc0 11068 ≤ cle 11209 ℕ0cn0 12442 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: swrdrlen 14624 pfxid 14649 pfxccat1 14667 pfxpfxid 14674 pfxcctswrd 14675 pfxccatin12 14698 pfxccatid 14706 cshwlen 14764 cshwidxmod 14768 fallfacfac 16011 cayhamlem1 22753 cpmadugsumlemF 22763 wlkepvtx 29588 wlkp1lem7 29607 wlkp1lem8 29608 dfpth2 29659 spthdep 29664 crctcshwlkn0lem6 29745 crctcsh 29754 wwlknllvtx 29776 wwlksnred 29822 wpthswwlks2on 29891 konigsbergiedgw 30177 konigsberglem1 30181 konigsberglem2 30182 konigsberglem3 30183 dlwwlknondlwlknonf1olem1 30293 splfv3 32880 cycpmco2f1 33081 cycpmco2rn 33082 cycpmco2lem3 33085 cycpmco2lem4 33086 cycpmco2lem5 33087 cycpmco2lem6 33088 cycpmco2lem7 33089 cycpmco2 33090 iwrdsplit 34378 fibp1 34392 revpfxsfxrev 35103 poimirlem10 37624 poimirlem17 37631 poimirlem23 37637 poimirlem26 37640 poimirlem27 37641 iccpartiltu 47423 iccpartlt 47425 iccpartleu 47429 iccpartrn 47431 iccelpart 47434 iccpartiun 47435 iccpartdisj 47438 upgrimpthslem2 47908 upgrimpths 47909 upgrimcycls 47911 cycl3grtri 47946 usgrexmpl1lem 48012 |
| Copyright terms: Public domain | W3C validator |