| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0fz0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| nn0fz0 | ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 2 | nn0re 12427 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 3 | 2 | leidd 11720 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ 𝑁) |
| 4 | fznn0 13556 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...𝑁) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁))) | |
| 5 | 1, 3, 4 | mpbir2and 713 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
| 6 | elfz3nn0 13558 | . 2 ⊢ (𝑁 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
| 7 | 5, 6 | impbii 209 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 0cc0 11044 ≤ cle 11185 ℕ0cn0 12418 ...cfz 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 |
| This theorem is referenced by: swrdrlen 14600 pfxid 14625 pfxccat1 14643 pfxpfxid 14650 pfxcctswrd 14651 pfxccatin12 14674 pfxccatid 14682 cshwlen 14740 cshwidxmod 14744 fallfacfac 15987 cayhamlem1 22729 cpmadugsumlemF 22739 wlkepvtx 29562 wlkp1lem7 29581 wlkp1lem8 29582 dfpth2 29632 spthdep 29637 crctcshwlkn0lem6 29718 crctcsh 29727 wwlknllvtx 29749 wwlksnred 29795 wpthswwlks2on 29864 konigsbergiedgw 30150 konigsberglem1 30154 konigsberglem2 30155 konigsberglem3 30156 dlwwlknondlwlknonf1olem1 30266 splfv3 32853 cycpmco2f1 33054 cycpmco2rn 33055 cycpmco2lem3 33058 cycpmco2lem4 33059 cycpmco2lem5 33060 cycpmco2lem6 33061 cycpmco2lem7 33062 cycpmco2 33063 iwrdsplit 34351 fibp1 34365 revpfxsfxrev 35076 poimirlem10 37597 poimirlem17 37604 poimirlem23 37610 poimirlem26 37613 poimirlem27 37614 iccpartiltu 47396 iccpartlt 47398 iccpartleu 47402 iccpartrn 47404 iccelpart 47407 iccpartiun 47408 iccpartdisj 47411 upgrimpthslem2 47881 upgrimpths 47882 upgrimcycls 47884 cycl3grtri 47919 usgrexmpl1lem 47985 |
| Copyright terms: Public domain | W3C validator |