![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzm1ndvds | Structured version Visualization version GIF version |
Description: No number between 1 and 𝑀 − 1 divides 𝑀. (Contributed by Mario Carneiro, 24-Jan-2015.) |
Ref | Expression |
---|---|
fzm1ndvds | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle2 12750 | . . . . 5 ⊢ (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ≤ (𝑀 − 1)) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ≤ (𝑀 − 1)) |
3 | elfzelz 12747 | . . . . . 6 ⊢ (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ∈ ℤ) | |
4 | 3 | adantl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℤ) |
5 | nnz 11842 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ) |
7 | zltlem1 11873 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ 𝑁 ≤ (𝑀 − 1))) | |
8 | 4, 6, 7 | syl2anc 584 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑁 < 𝑀 ↔ 𝑁 ≤ (𝑀 − 1))) |
9 | 2, 8 | mpbird 258 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 < 𝑀) |
10 | elfznn 12775 | . . . . . 6 ⊢ (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ∈ ℕ) | |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℕ) |
12 | 11 | nnred 11490 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℝ) |
13 | nnre 11482 | . . . . 5 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ) |
15 | 12, 14 | ltnled 10623 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁)) |
16 | 9, 15 | mpbid 233 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀 ≤ 𝑁) |
17 | dvdsle 15481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) | |
18 | 6, 11, 17 | syl2anc 584 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
19 | 16, 18 | mtod 199 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∈ wcel 2079 class class class wbr 4956 (class class class)co 7007 ℝcr 10371 1c1 10373 < clt 10510 ≤ cle 10511 − cmin 10706 ℕcn 11475 ℤcz 11818 ...cfz 12731 ∥ cdvds 15428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-n0 11735 df-z 11819 df-uz 12083 df-fz 12732 df-dvds 15429 |
This theorem is referenced by: prmdivdiv 15941 reumodprminv 15958 wilthlem1 25315 wilthlem2 25316 wilthlem3 25317 lgseisenlem1 25621 lgseisenlem2 25622 lgseisenlem3 25623 lgsquadlem3 25628 etransclem44 42059 |
Copyright terms: Public domain | W3C validator |