MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzm1ndvds Structured version   Visualization version   GIF version

Theorem fzm1ndvds 15493
Description: No number between 1 and 𝑀 − 1 divides 𝑀. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
fzm1ndvds ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)

Proof of Theorem fzm1ndvds
StepHypRef Expression
1 elfzle2 12750 . . . . 5 (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ≤ (𝑀 − 1))
21adantl 482 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ≤ (𝑀 − 1))
3 elfzelz 12747 . . . . . 6 (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ∈ ℤ)
43adantl 482 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℤ)
5 nnz 11842 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
65adantr 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
7 zltlem1 11873 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀𝑁 ≤ (𝑀 − 1)))
84, 6, 7syl2anc 584 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑁 < 𝑀𝑁 ≤ (𝑀 − 1)))
92, 8mpbird 258 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 < 𝑀)
10 elfznn 12775 . . . . . 6 (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ∈ ℕ)
1110adantl 482 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℕ)
1211nnred 11490 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℝ)
13 nnre 11482 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413adantr 481 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
1512, 14ltnled 10623 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
169, 15mpbid 233 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)
17 dvdsle 15481 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
186, 11, 17syl2anc 584 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑀𝑁𝑀𝑁))
1916, 18mtod 199 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wcel 2079   class class class wbr 4956  (class class class)co 7007  cr 10371  1c1 10373   < clt 10510  cle 10511  cmin 10706  cn 11475  cz 11818  ...cfz 12731  cdvds 15428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-n0 11735  df-z 11819  df-uz 12083  df-fz 12732  df-dvds 15429
This theorem is referenced by:  prmdivdiv  15941  reumodprminv  15958  wilthlem1  25315  wilthlem2  25316  wilthlem3  25317  lgseisenlem1  25621  lgseisenlem2  25622  lgseisenlem3  25623  lgsquadlem3  25628  etransclem44  42059
  Copyright terms: Public domain W3C validator