MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzm1ndvds Structured version   Visualization version   GIF version

Theorem fzm1ndvds 16228
Description: No number between 1 and 𝑀 − 1 divides 𝑀. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
fzm1ndvds ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)

Proof of Theorem fzm1ndvds
StepHypRef Expression
1 elfzle2 13423 . . . . 5 (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ≤ (𝑀 − 1))
21adantl 481 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ≤ (𝑀 − 1))
3 elfzelz 13419 . . . . . 6 (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ∈ ℤ)
43adantl 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℤ)
5 nnz 12484 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
65adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
7 zltlem1 12520 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀𝑁 ≤ (𝑀 − 1)))
84, 6, 7syl2anc 584 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑁 < 𝑀𝑁 ≤ (𝑀 − 1)))
92, 8mpbird 257 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 < 𝑀)
10 elfznn 13448 . . . . . 6 (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ∈ ℕ)
1110adantl 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℕ)
1211nnred 12135 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℝ)
13 nnre 12127 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413adantr 480 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
1512, 14ltnled 11255 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
169, 15mpbid 232 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)
17 dvdsle 16216 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
186, 11, 17syl2anc 584 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑀𝑁𝑀𝑁))
1916, 18mtod 198 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5086  (class class class)co 7341  cr 11000  1c1 11002   < clt 11141  cle 11142  cmin 11339  cn 12120  cz 12463  ...cfz 13402  cdvds 16158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-dvds 16159
This theorem is referenced by:  prmdivdiv  16693  reumodprminv  16711  wilthlem1  27000  wilthlem2  27001  wilthlem3  27002  lgseisenlem1  27308  lgseisenlem2  27309  lgseisenlem3  27310  lgsquadlem3  27315  aks6d1c5lem1  42169  etransclem44  46316  difltmodne  47373  gpg3kgrtriexlem5  48118
  Copyright terms: Public domain W3C validator