![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzval3 | Structured version Visualization version GIF version |
Description: Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzval3 | ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 12607 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
2 | fzoval 13637 | . . 3 ⊢ ((𝑁 + 1) ∈ ℤ → (𝑀..^(𝑁 + 1)) = (𝑀...((𝑁 + 1) − 1))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑀..^(𝑁 + 1)) = (𝑀...((𝑁 + 1) − 1))) |
4 | zcn 12567 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | ax-1cn 11170 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | pncan 11470 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
7 | 4, 5, 6 | sylancl 586 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) − 1) = 𝑁) |
8 | 7 | oveq2d 7427 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑀...((𝑁 + 1) − 1)) = (𝑀...𝑁)) |
9 | 3, 8 | eqtr2d 2773 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 (class class class)co 7411 ℂcc 11110 1c1 11113 + caddc 11115 − cmin 11448 ℤcz 12562 ...cfz 13488 ..^cfzo 13631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 |
This theorem is referenced by: fz0add1fz1 13706 fzosn 13707 fzofzp1 13733 fzisfzounsn 13748 ffz0iswrd 14495 fzosump1 15702 telfsum 15754 telfsum2 15755 sadadd 16412 sadass 16416 smuval2 16427 smumul 16438 prmgaplem7 16994 volsup 25297 rplogsumlem2 27212 rpvmasumlem 27214 dchrisumlem2 27217 dchrisum0flblem1 27235 dchrisum0flb 27237 selberg2lem 27277 logdivbnd 27283 pntrsumo1 27292 pntrlog2bndlem2 27305 pntrlog2bndlem4 27307 pntlemr 27329 wlkdlem1 29194 wwlknvtx 29354 wwlksnred 29401 1wlkdlem1 29645 eupth2lem3 29744 f1ocnt 32268 lmat22det 33088 meascnbl 33503 fibp1 33686 signsplypnf 33847 fsum2dsub 33905 pfxwlk 34400 revwlk 34401 mblfinlem2 36829 itgspltprt 44994 fourierdlem20 45142 carageniuncllem1 45536 smfmullem2 45807 iccpartgtprec 46387 fargshiftfo 46409 sbgoldbo 46754 nnsum4primeseven 46767 nnsum4primesevenALTV 46768 nn0sumshdiglemA 47393 nn0sumshdiglemB 47394 |
Copyright terms: Public domain | W3C validator |