Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzval3 | Structured version Visualization version GIF version |
Description: Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzval3 | ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 12361 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
2 | fzoval 13388 | . . 3 ⊢ ((𝑁 + 1) ∈ ℤ → (𝑀..^(𝑁 + 1)) = (𝑀...((𝑁 + 1) − 1))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑀..^(𝑁 + 1)) = (𝑀...((𝑁 + 1) − 1))) |
4 | zcn 12324 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | ax-1cn 10929 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | pncan 11227 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
7 | 4, 5, 6 | sylancl 586 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) − 1) = 𝑁) |
8 | 7 | oveq2d 7291 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑀...((𝑁 + 1) − 1)) = (𝑀...𝑁)) |
9 | 3, 8 | eqtr2d 2779 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 − cmin 11205 ℤcz 12319 ...cfz 13239 ..^cfzo 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 |
This theorem is referenced by: fz0add1fz1 13457 fzosn 13458 fzofzp1 13484 fzisfzounsn 13499 ffz0iswrd 14244 fzosump1 15464 telfsum 15516 telfsum2 15517 sadadd 16174 sadass 16178 smuval2 16189 smumul 16200 prmgaplem7 16758 volsup 24720 rplogsumlem2 26633 rpvmasumlem 26635 dchrisumlem2 26638 dchrisum0flblem1 26656 dchrisum0flb 26658 selberg2lem 26698 logdivbnd 26704 pntrsumo1 26713 pntrlog2bndlem2 26726 pntrlog2bndlem4 26728 pntlemr 26750 wlkdlem1 28050 wwlknvtx 28210 wwlksnred 28257 1wlkdlem1 28501 eupth2lem3 28600 f1ocnt 31123 lmat22det 31772 meascnbl 32187 fibp1 32368 signsplypnf 32529 fsum2dsub 32587 pfxwlk 33085 revwlk 33086 mblfinlem2 35815 itgspltprt 43520 fourierdlem20 43668 carageniuncllem1 44059 smfmullem2 44326 iccpartgtprec 44872 fargshiftfo 44894 sbgoldbo 45239 nnsum4primeseven 45252 nnsum4primesevenALTV 45253 nn0sumshdiglemA 45965 nn0sumshdiglemB 45966 |
Copyright terms: Public domain | W3C validator |