| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzval3 | Structured version Visualization version GIF version | ||
| Description: Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzval3 | ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z 12513 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 2 | fzoval 13560 | . . 3 ⊢ ((𝑁 + 1) ∈ ℤ → (𝑀..^(𝑁 + 1)) = (𝑀...((𝑁 + 1) − 1))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑀..^(𝑁 + 1)) = (𝑀...((𝑁 + 1) − 1))) |
| 4 | zcn 12473 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 5 | ax-1cn 11064 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | pncan 11366 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
| 7 | 4, 5, 6 | sylancl 586 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 + 1) − 1) = 𝑁) |
| 8 | 7 | oveq2d 7362 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑀...((𝑁 + 1) − 1)) = (𝑀...𝑁)) |
| 9 | 3, 8 | eqtr2d 2767 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 − cmin 11344 ℤcz 12468 ...cfz 13407 ..^cfzo 13554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 |
| This theorem is referenced by: fz0add1fz1 13635 fzosn 13636 fzofzp1 13664 fzisfzounsn 13680 ffz0iswrd 14448 fzosump1 15659 telfsum 15711 telfsum2 15712 sadadd 16378 sadass 16382 smuval2 16393 smumul 16404 prmgaplem7 16969 volsup 25484 rplogsumlem2 27423 rpvmasumlem 27425 dchrisumlem2 27428 dchrisum0flblem1 27446 dchrisum0flb 27448 selberg2lem 27488 logdivbnd 27494 pntrsumo1 27503 pntrlog2bndlem2 27516 pntrlog2bndlem4 27518 pntlemr 27540 wlkdlem1 29659 wwlknvtx 29823 wwlksnred 29870 1wlkdlem1 30117 eupth2lem3 30216 f1ocnt 32782 lmat22det 33835 meascnbl 34232 fibp1 34414 signsplypnf 34563 fsum2dsub 34620 pfxwlk 35168 revwlk 35169 mblfinlem2 37708 itgspltprt 46087 fourierdlem20 46235 carageniuncllem1 46629 smfmullem2 46900 ormkglobd 46983 iccpartgtprec 47530 fargshiftfo 47552 sbgoldbo 47897 nnsum4primeseven 47910 nnsum4primesevenALTV 47911 gpg5order 48170 gpg5gricstgr3 48200 gpgprismgr4cycllem9 48213 nn0sumshdiglemA 48730 nn0sumshdiglemB 48731 |
| Copyright terms: Public domain | W3C validator |