| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expp1d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| expcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| expp1d | ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | expcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | expp1 14040 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 · cmul 11080 ℕ0cn0 12449 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: expmordi 14139 facubnd 14272 hashmap 14407 binomlem 15802 incexclem 15809 geoserg 15839 cvgrat 15856 efcllem 16050 oexpneg 16322 pwp1fsum 16368 bitsp1 16408 bitsmod 16413 bitsinv1lem 16418 sadcaddlem 16434 sadadd2lem 16436 rplpwr 16535 eulerthlem2 16759 prmdiv 16762 vfermltlALT 16780 pcprendvds2 16819 pcpremul 16821 prmpwdvds 16882 2expltfac 17070 plyco 26153 dgrcolem1 26186 ftalem5 26994 bposlem5 27206 pntlemq 27519 pntlemr 27520 pntlemj 27521 ostth2lem2 27552 ostth2lem3 27553 rusgrnumwwlks 29911 ex-ind-dvds 30397 nexple 32776 2exple2exp 32777 oexpled 32779 fldext2rspun 33684 fldext2chn 33725 faclimlem3 35739 faclim2 35742 nn0prpwlem 36317 3lexlogpow5ineq5 42055 nicomachus 42307 abvexp 42527 3cubeslem2 42680 3cubeslem3l 42681 3cubeslem3r 42682 mzpexpmpt 42740 pell14qrexpclnn0 42861 jm2.17a 42956 jm2.17b 42957 jm2.17c 42958 jm2.18 42984 cnsrexpcl 43161 inductionexd 44151 binomcxplemnotnn0 44352 stoweidlem3 46008 stoweidlem19 46024 stirlinglem4 46082 stirlinglem7 46085 etransclem23 46262 sqrtpwpw2p 47543 fmtnorec2lem 47547 fmtnorec4 47554 fmtnoprmfac1lem 47569 fmtnoprmfac2 47572 fmtnofac1 47575 lighneallem3 47612 oexpnegALTV 47682 fppr2odd 47736 tgoldbachlt 47821 dignn0flhalflem2 48609 dignn0ehalf 48610 nn0sumshdiglemA 48612 nn0sumshdiglemB 48613 itcovalt2lem2lem2 48667 |
| Copyright terms: Public domain | W3C validator |