![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expp1d | Structured version Visualization version GIF version |
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
expcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
expp1d | ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | expcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | expp1 14106 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 · cmul 11158 ℕ0cn0 12524 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-exp 14100 |
This theorem is referenced by: expmordi 14204 facubnd 14336 hashmap 14471 binomlem 15862 incexclem 15869 geoserg 15899 cvgrat 15916 efcllem 16110 oexpneg 16379 pwp1fsum 16425 bitsp1 16465 bitsmod 16470 bitsinv1lem 16475 sadcaddlem 16491 sadadd2lem 16493 rplpwr 16592 eulerthlem2 16816 prmdiv 16819 vfermltlALT 16836 pcprendvds2 16875 pcpremul 16877 prmpwdvds 16938 2expltfac 17127 plyco 26295 dgrcolem1 26328 ftalem5 27135 bposlem5 27347 pntlemq 27660 pntlemr 27661 pntlemj 27662 ostth2lem2 27693 ostth2lem3 27694 rusgrnumwwlks 30004 ex-ind-dvds 30490 fldext2chn 33734 nexple 33990 faclimlem3 35725 faclim2 35728 nn0prpwlem 36305 3lexlogpow5ineq5 42042 nicomachus 42325 abvexp 42519 3cubeslem2 42673 3cubeslem3l 42674 3cubeslem3r 42675 mzpexpmpt 42733 pell14qrexpclnn0 42854 jm2.17a 42949 jm2.17b 42950 jm2.17c 42951 jm2.18 42977 cnsrexpcl 43154 inductionexd 44145 binomcxplemnotnn0 44352 stoweidlem3 45959 stoweidlem19 45975 stirlinglem4 46033 stirlinglem7 46036 etransclem23 46213 sqrtpwpw2p 47463 fmtnorec2lem 47467 fmtnorec4 47474 fmtnoprmfac1lem 47489 fmtnoprmfac2 47492 fmtnofac1 47495 lighneallem3 47532 oexpnegALTV 47602 fppr2odd 47656 tgoldbachlt 47741 dignn0flhalflem2 48466 dignn0ehalf 48467 nn0sumshdiglemA 48469 nn0sumshdiglemB 48470 itcovalt2lem2lem2 48524 |
Copyright terms: Public domain | W3C validator |