Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expp1d | Structured version Visualization version GIF version |
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
expcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
expp1d | ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | expcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | expp1 13717 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 · cmul 10807 ℕ0cn0 12163 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: expmordi 13813 facubnd 13942 hashmap 14078 binomlem 15469 incexclem 15476 geoserg 15506 cvgrat 15523 efcllem 15715 oexpneg 15982 pwp1fsum 16028 bitsp1 16066 bitsmod 16071 bitsinv1lem 16076 sadcaddlem 16092 sadadd2lem 16094 rplpwr 16195 eulerthlem2 16411 prmdiv 16414 vfermltlALT 16431 pcprendvds2 16470 pcpremul 16472 prmpwdvds 16533 2expltfac 16722 plyco 25307 dgrcolem1 25339 ftalem5 26131 bposlem5 26341 pntlemq 26654 pntlemr 26655 pntlemj 26656 ostth2lem2 26687 ostth2lem3 26688 rusgrnumwwlks 28240 ex-ind-dvds 28726 nexple 31877 faclimlem3 33617 faclim2 33620 nn0prpwlem 34438 3lexlogpow5ineq5 39996 3cubeslem2 40423 3cubeslem3l 40424 3cubeslem3r 40425 mzpexpmpt 40483 pell14qrexpclnn0 40604 jm2.17a 40698 jm2.17b 40699 jm2.17c 40700 jm2.18 40726 cnsrexpcl 40906 inductionexd 41654 binomcxplemnotnn0 41863 stoweidlem3 43434 stoweidlem19 43450 stirlinglem4 43508 stirlinglem7 43511 etransclem23 43688 sqrtpwpw2p 44878 fmtnorec2lem 44882 fmtnorec4 44889 fmtnoprmfac1lem 44904 fmtnoprmfac2 44907 fmtnofac1 44910 lighneallem3 44947 oexpnegALTV 45017 fppr2odd 45071 tgoldbachlt 45156 dignn0flhalflem2 45850 dignn0ehalf 45851 nn0sumshdiglemA 45853 nn0sumshdiglemB 45854 itcovalt2lem2lem2 45908 |
Copyright terms: Public domain | W3C validator |