| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expp1d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| expcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| expp1d | ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | expcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | expp1 13972 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 1c1 11004 + caddc 11006 · cmul 11008 ℕ0cn0 12378 ↑cexp 13965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-exp 13966 |
| This theorem is referenced by: expmordi 14071 facubnd 14204 hashmap 14339 binomlem 15733 incexclem 15740 geoserg 15770 cvgrat 15787 efcllem 15981 oexpneg 16253 pwp1fsum 16299 bitsp1 16339 bitsmod 16344 bitsinv1lem 16349 sadcaddlem 16365 sadadd2lem 16367 rplpwr 16466 eulerthlem2 16690 prmdiv 16693 vfermltlALT 16711 pcprendvds2 16750 pcpremul 16752 prmpwdvds 16813 2expltfac 17001 plyco 26171 dgrcolem1 26204 ftalem5 27012 bposlem5 27224 pntlemq 27537 pntlemr 27538 pntlemj 27539 ostth2lem2 27570 ostth2lem3 27571 rusgrnumwwlks 29950 ex-ind-dvds 30436 nexple 32822 2exple2exp 32823 oexpled 32825 fldext2rspun 33690 fldext2chn 33736 faclimlem3 35777 faclim2 35780 nn0prpwlem 36355 3lexlogpow5ineq5 42092 nicomachus 42344 abvexp 42564 3cubeslem2 42717 3cubeslem3l 42718 3cubeslem3r 42719 mzpexpmpt 42777 pell14qrexpclnn0 42898 jm2.17a 42992 jm2.17b 42993 jm2.17c 42994 jm2.18 43020 cnsrexpcl 43197 inductionexd 44187 binomcxplemnotnn0 44388 stoweidlem3 46040 stoweidlem19 46056 stirlinglem4 46114 stirlinglem7 46117 etransclem23 46294 sqrtpwpw2p 47568 fmtnorec2lem 47572 fmtnorec4 47579 fmtnoprmfac1lem 47594 fmtnoprmfac2 47597 fmtnofac1 47600 lighneallem3 47637 oexpnegALTV 47707 fppr2odd 47761 tgoldbachlt 47846 dignn0flhalflem2 48647 dignn0ehalf 48648 nn0sumshdiglemA 48650 nn0sumshdiglemB 48651 itcovalt2lem2lem2 48705 |
| Copyright terms: Public domain | W3C validator |