Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expp1d | Structured version Visualization version GIF version |
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
expcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
expp1d | ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | expcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | expp1 13789 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 · cmul 10876 ℕ0cn0 12233 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-exp 13783 |
This theorem is referenced by: expmordi 13885 facubnd 14014 hashmap 14150 binomlem 15541 incexclem 15548 geoserg 15578 cvgrat 15595 efcllem 15787 oexpneg 16054 pwp1fsum 16100 bitsp1 16138 bitsmod 16143 bitsinv1lem 16148 sadcaddlem 16164 sadadd2lem 16166 rplpwr 16267 eulerthlem2 16483 prmdiv 16486 vfermltlALT 16503 pcprendvds2 16542 pcpremul 16544 prmpwdvds 16605 2expltfac 16794 plyco 25402 dgrcolem1 25434 ftalem5 26226 bposlem5 26436 pntlemq 26749 pntlemr 26750 pntlemj 26751 ostth2lem2 26782 ostth2lem3 26783 rusgrnumwwlks 28339 ex-ind-dvds 28825 nexple 31977 faclimlem3 33711 faclim2 33714 nn0prpwlem 34511 3lexlogpow5ineq5 40068 3cubeslem2 40507 3cubeslem3l 40508 3cubeslem3r 40509 mzpexpmpt 40567 pell14qrexpclnn0 40688 jm2.17a 40782 jm2.17b 40783 jm2.17c 40784 jm2.18 40810 cnsrexpcl 40990 inductionexd 41765 binomcxplemnotnn0 41974 stoweidlem3 43544 stoweidlem19 43560 stirlinglem4 43618 stirlinglem7 43621 etransclem23 43798 sqrtpwpw2p 44990 fmtnorec2lem 44994 fmtnorec4 45001 fmtnoprmfac1lem 45016 fmtnoprmfac2 45019 fmtnofac1 45022 lighneallem3 45059 oexpnegALTV 45129 fppr2odd 45183 tgoldbachlt 45268 dignn0flhalflem2 45962 dignn0ehalf 45963 nn0sumshdiglemA 45965 nn0sumshdiglemB 45966 itcovalt2lem2lem2 46020 |
Copyright terms: Public domain | W3C validator |