Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2098
(class class class)co 7414 ℕ0cn0 12500 ↑cexp 14056 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-n0 12501 df-z 12587
df-uz 12851 df-seq 13997 df-exp 14057 |
This theorem is referenced by: bitsinv2
16415 bitsf1ocnv
16416 sadcaddlem
16429 sadadd2lem
16431 dvdsprmpweqle
16852 oddprmdvds
16869 ex-ind-dvds
30287 aks6d1c2lem4
41626 aks6d1c7
41684 nn0expgcd
41932 pell1qrge1
42327 jm3.1
42478 stoweidlem1
45424 stoweidlem45
45468 fmtnoge3
46905 fmtnom1nn
46907 fmtnof1
46910 sqrtpwpw2p
46913 fmtnosqrt
46914 fmtnorec2lem
46917 fmtnodvds
46919 fmtnorec3
46923 fmtnorec4
46924 odz2prm2pw
46938 fmtnoprmfac1lem
46939 fmtnoprmfac2lem1
46941 fmtnofac2lem
46943 fmtnofac2
46944 fmtnofac1
46945 flsqrt
46968 lighneallem2
46981 lighneallem3
46982 lighneallem4a
46983 lighneallem4b
46984 lighneallem4
46985 pgrple2abl
47513 logbpw2m1
47724 blenpw2m1
47736 dignn0ehalf
47774 nn0sumshdiglemA
47776 nn0sumshdiglemB
47777 nn0mullong
47782 itcovalt2lem2lem2
47831 |