MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqz Structured version   Visualization version   GIF version

Theorem rlimsqz 15006
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqz.d (𝜑𝐷 ∈ ℝ)
rlimsqz.m (𝜑𝑀 ∈ ℝ)
rlimsqz.l (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimsqz.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
rlimsqz.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
rlimsqz.1 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵𝐶)
rlimsqz.2 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐷)
Assertion
Ref Expression
rlimsqz (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem rlimsqz
StepHypRef Expression
1 rlimsqz.m . 2 (𝜑𝑀 ∈ ℝ)
2 rlimsqz.d . . 3 (𝜑𝐷 ∈ ℝ)
32recnd 10667 . 2 (𝜑𝐷 ∈ ℂ)
4 rlimsqz.l . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
5 rlimsqz.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
65recnd 10667 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
7 rlimsqz.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
87recnd 10667 . 2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
95adantrr 716 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵 ∈ ℝ)
107adantrr 716 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶 ∈ ℝ)
112adantr 484 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷 ∈ ℝ)
12 rlimsqz.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵𝐶)
139, 10, 11, 12lesub2dd 11255 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (𝐷𝐶) ≤ (𝐷𝐵))
14 rlimsqz.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐷)
1510, 11, 14abssuble0d 14792 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐷)) = (𝐷𝐶))
169, 10, 11, 12, 14letrd 10795 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵𝐷)
179, 11, 16abssuble0d 14792 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐵𝐷)) = (𝐷𝐵))
1813, 15, 173brtr4d 5084 . 2 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐷)) ≤ (abs‘(𝐵𝐷)))
191, 3, 4, 6, 8, 18rlimsqzlem 15005 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115   class class class wbr 5052  cmpt 5132  cfv 6343  (class class class)co 7149  cr 10534  cle 10674  cmin 10868  abscabs 14593  𝑟 crli 14842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-ico 12741  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-rlim 14846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator