MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqz Structured version   Visualization version   GIF version

Theorem rlimsqz 15460
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqz.d (𝜑𝐷 ∈ ℝ)
rlimsqz.m (𝜑𝑀 ∈ ℝ)
rlimsqz.l (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimsqz.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
rlimsqz.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
rlimsqz.1 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵𝐶)
rlimsqz.2 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐷)
Assertion
Ref Expression
rlimsqz (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem rlimsqz
StepHypRef Expression
1 rlimsqz.m . 2 (𝜑𝑀 ∈ ℝ)
2 rlimsqz.d . . 3 (𝜑𝐷 ∈ ℝ)
32recnd 11104 . 2 (𝜑𝐷 ∈ ℂ)
4 rlimsqz.l . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
5 rlimsqz.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
65recnd 11104 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
7 rlimsqz.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
87recnd 11104 . 2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
95adantrr 714 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵 ∈ ℝ)
107adantrr 714 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶 ∈ ℝ)
112adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷 ∈ ℝ)
12 rlimsqz.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵𝐶)
139, 10, 11, 12lesub2dd 11693 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (𝐷𝐶) ≤ (𝐷𝐵))
14 rlimsqz.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐷)
1510, 11, 14abssuble0d 15243 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐷)) = (𝐷𝐶))
169, 10, 11, 12, 14letrd 11233 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵𝐷)
179, 11, 16abssuble0d 15243 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐵𝐷)) = (𝐷𝐵))
1813, 15, 173brtr4d 5124 . 2 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐷)) ≤ (abs‘(𝐵𝐷)))
191, 3, 4, 6, 8, 18rlimsqzlem 15459 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105   class class class wbr 5092  cmpt 5175  cfv 6479  (class class class)co 7337  cr 10971  cle 11111  cmin 11306  abscabs 15044  𝑟 crli 15293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-ico 13186  df-seq 13823  df-exp 13884  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-rlim 15297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator