Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem7 Structured version   Visualization version   GIF version

Theorem fourierdlem7 42398
Description: The difference between the periodic sawtooth function and the identity function is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem7.a (𝜑𝐴 ∈ ℝ)
fourierdlem7.b (𝜑𝐵 ∈ ℝ)
fourierdlem7.altb (𝜑𝐴 < 𝐵)
fourierdlem7.t 𝑇 = (𝐵𝐴)
fourierdlem7.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem7.x (𝜑𝑋 ∈ ℝ)
fourierdlem7.y (𝜑𝑌 ∈ ℝ)
fourierdlem7.xlty (𝜑𝑋𝑌)
Assertion
Ref Expression
fourierdlem7 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑇   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐸(𝑥)

Proof of Theorem fourierdlem7
StepHypRef Expression
1 fourierdlem7.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2 fourierdlem7.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
31, 2resubcld 11067 . . . . 5 (𝜑 → (𝐵𝑌) ∈ ℝ)
4 fourierdlem7.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
61, 5resubcld 11067 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℝ)
74, 6eqeltrid 2917 . . . . 5 (𝜑𝑇 ∈ ℝ)
8 fourierdlem7.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
95, 1posdifd 11226 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
108, 9mpbid 234 . . . . . . 7 (𝜑 → 0 < (𝐵𝐴))
1110, 4breqtrrdi 5107 . . . . . 6 (𝜑 → 0 < 𝑇)
1211gt0ne0d 11203 . . . . 5 (𝜑𝑇 ≠ 0)
133, 7, 12redivcld 11467 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
14 fourierdlem7.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
151, 14resubcld 11067 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℝ)
1615, 7, 12redivcld 11467 . . . 4 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
177, 11elrpd 12427 . . . . 5 (𝜑𝑇 ∈ ℝ+)
18 fourierdlem7.xlty . . . . . 6 (𝜑𝑋𝑌)
1914, 2, 1, 18lesub2dd 11256 . . . . 5 (𝜑 → (𝐵𝑌) ≤ (𝐵𝑋))
203, 15, 17, 19lediv1dd 12488 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇))
21 flwordi 13181 . . . 4 ((((𝐵𝑌) / 𝑇) ∈ ℝ ∧ ((𝐵𝑋) / 𝑇) ∈ ℝ ∧ ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇)) → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2213, 16, 20, 21syl3anc 1367 . . 3 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2313flcld 13167 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
2423zred 12086 . . . 4 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
2516flcld 13167 . . . . 5 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
2625zred 12086 . . . 4 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
2724, 26, 17lemul1d 12473 . . 3 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)) ↔ ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
2822, 27mpbid 234 . 2 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
29 fourierdlem7.e . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3029a1i 11 . . . . 5 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
31 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
32 oveq2 7163 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐵𝑥) = (𝐵𝑌))
3332oveq1d 7170 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
3433fveq2d 6673 . . . . . . . 8 (𝑥 = 𝑌 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
3534oveq1d 7170 . . . . . . 7 (𝑥 = 𝑌 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
3631, 35oveq12d 7173 . . . . . 6 (𝑥 = 𝑌 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3736adantl 484 . . . . 5 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3824, 7remulcld 10670 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
392, 38readdcld 10669 . . . . 5 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
4030, 37, 2, 39fvmptd 6774 . . . 4 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
4140oveq1d 7170 . . 3 (𝜑 → ((𝐸𝑌) − 𝑌) = ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌))
422recnd 10668 . . . 4 (𝜑𝑌 ∈ ℂ)
4338recnd 10668 . . . 4 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℂ)
4442, 43pncan2d 10998 . . 3 (𝜑 → ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
4541, 44eqtrd 2856 . 2 (𝜑 → ((𝐸𝑌) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
46 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
47 oveq2 7163 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
4847oveq1d 7170 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
4948fveq2d 6673 . . . . . . . 8 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
5049oveq1d 7170 . . . . . . 7 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
5146, 50oveq12d 7173 . . . . . 6 (𝑥 = 𝑋 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5251adantl 484 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5326, 7remulcld 10670 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
5414, 53readdcld 10669 . . . . 5 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ ℝ)
5530, 52, 14, 54fvmptd 6774 . . . 4 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5655oveq1d 7170 . . 3 (𝜑 → ((𝐸𝑋) − 𝑋) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋))
5714recnd 10668 . . . 4 (𝜑𝑋 ∈ ℂ)
5853recnd 10668 . . . 4 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
5957, 58pncan2d 10998 . . 3 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6056, 59eqtrd 2856 . 2 (𝜑 → ((𝐸𝑋) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6128, 45, 603brtr4d 5097 1 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110   class class class wbr 5065  cmpt 5145  cfv 6354  (class class class)co 7155  cr 10535  0cc0 10536   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cfl 13159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fl 13161
This theorem is referenced by:  fourierdlem63  42453
  Copyright terms: Public domain W3C validator