Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem7 Structured version   Visualization version   GIF version

Theorem fourierdlem7 46035
Description: The difference between the periodic sawtooth function and the identity function is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem7.a (𝜑𝐴 ∈ ℝ)
fourierdlem7.b (𝜑𝐵 ∈ ℝ)
fourierdlem7.altb (𝜑𝐴 < 𝐵)
fourierdlem7.t 𝑇 = (𝐵𝐴)
fourierdlem7.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem7.x (𝜑𝑋 ∈ ℝ)
fourierdlem7.y (𝜑𝑌 ∈ ℝ)
fourierdlem7.xlty (𝜑𝑋𝑌)
Assertion
Ref Expression
fourierdlem7 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑇   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐸(𝑥)

Proof of Theorem fourierdlem7
StepHypRef Expression
1 fourierdlem7.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2 fourierdlem7.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
31, 2resubcld 11718 . . . . 5 (𝜑 → (𝐵𝑌) ∈ ℝ)
4 fourierdlem7.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
61, 5resubcld 11718 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℝ)
74, 6eqeltrid 2848 . . . . 5 (𝜑𝑇 ∈ ℝ)
8 fourierdlem7.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
95, 1posdifd 11877 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
108, 9mpbid 232 . . . . . . 7 (𝜑 → 0 < (𝐵𝐴))
1110, 4breqtrrdi 5208 . . . . . 6 (𝜑 → 0 < 𝑇)
1211gt0ne0d 11854 . . . . 5 (𝜑𝑇 ≠ 0)
133, 7, 12redivcld 12122 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
14 fourierdlem7.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
151, 14resubcld 11718 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℝ)
1615, 7, 12redivcld 12122 . . . 4 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
177, 11elrpd 13096 . . . . 5 (𝜑𝑇 ∈ ℝ+)
18 fourierdlem7.xlty . . . . . 6 (𝜑𝑋𝑌)
1914, 2, 1, 18lesub2dd 11907 . . . . 5 (𝜑 → (𝐵𝑌) ≤ (𝐵𝑋))
203, 15, 17, 19lediv1dd 13157 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇))
21 flwordi 13863 . . . 4 ((((𝐵𝑌) / 𝑇) ∈ ℝ ∧ ((𝐵𝑋) / 𝑇) ∈ ℝ ∧ ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇)) → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2213, 16, 20, 21syl3anc 1371 . . 3 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2313flcld 13849 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
2423zred 12747 . . . 4 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
2516flcld 13849 . . . . 5 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
2625zred 12747 . . . 4 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
2724, 26, 17lemul1d 13142 . . 3 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)) ↔ ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
2822, 27mpbid 232 . 2 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
29 fourierdlem7.e . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3029a1i 11 . . . . 5 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
31 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
32 oveq2 7456 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐵𝑥) = (𝐵𝑌))
3332oveq1d 7463 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
3433fveq2d 6924 . . . . . . . 8 (𝑥 = 𝑌 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
3534oveq1d 7463 . . . . . . 7 (𝑥 = 𝑌 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
3631, 35oveq12d 7466 . . . . . 6 (𝑥 = 𝑌 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3736adantl 481 . . . . 5 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3824, 7remulcld 11320 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
392, 38readdcld 11319 . . . . 5 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
4030, 37, 2, 39fvmptd 7036 . . . 4 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
4140oveq1d 7463 . . 3 (𝜑 → ((𝐸𝑌) − 𝑌) = ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌))
422recnd 11318 . . . 4 (𝜑𝑌 ∈ ℂ)
4338recnd 11318 . . . 4 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℂ)
4442, 43pncan2d 11649 . . 3 (𝜑 → ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
4541, 44eqtrd 2780 . 2 (𝜑 → ((𝐸𝑌) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
46 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
47 oveq2 7456 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
4847oveq1d 7463 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
4948fveq2d 6924 . . . . . . . 8 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
5049oveq1d 7463 . . . . . . 7 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
5146, 50oveq12d 7466 . . . . . 6 (𝑥 = 𝑋 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5251adantl 481 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5326, 7remulcld 11320 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
5414, 53readdcld 11319 . . . . 5 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ ℝ)
5530, 52, 14, 54fvmptd 7036 . . . 4 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5655oveq1d 7463 . . 3 (𝜑 → ((𝐸𝑋) − 𝑋) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋))
5714recnd 11318 . . . 4 (𝜑𝑋 ∈ ℂ)
5853recnd 11318 . . . 4 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
5957, 58pncan2d 11649 . . 3 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6056, 59eqtrd 2780 . 2 (𝜑 → ((𝐸𝑋) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6128, 45, 603brtr4d 5198 1 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cfl 13841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843
This theorem is referenced by:  fourierdlem63  46090
  Copyright terms: Public domain W3C validator