Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem7 Structured version   Visualization version   GIF version

Theorem fourierdlem7 41123
 Description: The difference between the periodic sawtooth function and the identity function is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem7.a (𝜑𝐴 ∈ ℝ)
fourierdlem7.b (𝜑𝐵 ∈ ℝ)
fourierdlem7.altb (𝜑𝐴 < 𝐵)
fourierdlem7.t 𝑇 = (𝐵𝐴)
fourierdlem7.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem7.x (𝜑𝑋 ∈ ℝ)
fourierdlem7.y (𝜑𝑌 ∈ ℝ)
fourierdlem7.xlty (𝜑𝑋𝑌)
Assertion
Ref Expression
fourierdlem7 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑇   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐸(𝑥)

Proof of Theorem fourierdlem7
StepHypRef Expression
1 fourierdlem7.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2 fourierdlem7.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
31, 2resubcld 10789 . . . . 5 (𝜑 → (𝐵𝑌) ∈ ℝ)
4 fourierdlem7.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
61, 5resubcld 10789 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℝ)
74, 6syl5eqel 2910 . . . . 5 (𝜑𝑇 ∈ ℝ)
8 fourierdlem7.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
95, 1posdifd 10946 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
108, 9mpbid 224 . . . . . . 7 (𝜑 → 0 < (𝐵𝐴))
1110, 4syl6breqr 4917 . . . . . 6 (𝜑 → 0 < 𝑇)
1211gt0ne0d 10923 . . . . 5 (𝜑𝑇 ≠ 0)
133, 7, 12redivcld 11186 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
14 fourierdlem7.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
151, 14resubcld 10789 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℝ)
1615, 7, 12redivcld 11186 . . . 4 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
177, 11elrpd 12160 . . . . 5 (𝜑𝑇 ∈ ℝ+)
18 fourierdlem7.xlty . . . . . 6 (𝜑𝑋𝑌)
1914, 2, 1, 18lesub2dd 10976 . . . . 5 (𝜑 → (𝐵𝑌) ≤ (𝐵𝑋))
203, 15, 17, 19lediv1dd 12221 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇))
21 flwordi 12915 . . . 4 ((((𝐵𝑌) / 𝑇) ∈ ℝ ∧ ((𝐵𝑋) / 𝑇) ∈ ℝ ∧ ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇)) → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2213, 16, 20, 21syl3anc 1494 . . 3 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2313flcld 12901 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
2423zred 11817 . . . 4 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
2516flcld 12901 . . . . 5 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
2625zred 11817 . . . 4 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
2724, 26, 17lemul1d 12206 . . 3 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)) ↔ ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
2822, 27mpbid 224 . 2 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
29 fourierdlem7.e . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3029a1i 11 . . . . 5 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
31 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
32 oveq2 6918 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐵𝑥) = (𝐵𝑌))
3332oveq1d 6925 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
3433fveq2d 6441 . . . . . . . 8 (𝑥 = 𝑌 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
3534oveq1d 6925 . . . . . . 7 (𝑥 = 𝑌 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
3631, 35oveq12d 6928 . . . . . 6 (𝑥 = 𝑌 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3736adantl 475 . . . . 5 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3824, 7remulcld 10394 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
392, 38readdcld 10393 . . . . 5 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
4030, 37, 2, 39fvmptd 6539 . . . 4 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
4140oveq1d 6925 . . 3 (𝜑 → ((𝐸𝑌) − 𝑌) = ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌))
422recnd 10392 . . . 4 (𝜑𝑌 ∈ ℂ)
4338recnd 10392 . . . 4 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℂ)
4442, 43pncan2d 10722 . . 3 (𝜑 → ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
4541, 44eqtrd 2861 . 2 (𝜑 → ((𝐸𝑌) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
46 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
47 oveq2 6918 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
4847oveq1d 6925 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
4948fveq2d 6441 . . . . . . . 8 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
5049oveq1d 6925 . . . . . . 7 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
5146, 50oveq12d 6928 . . . . . 6 (𝑥 = 𝑋 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5251adantl 475 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5326, 7remulcld 10394 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
5414, 53readdcld 10393 . . . . 5 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ ℝ)
5530, 52, 14, 54fvmptd 6539 . . . 4 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5655oveq1d 6925 . . 3 (𝜑 → ((𝐸𝑋) − 𝑋) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋))
5714recnd 10392 . . . 4 (𝜑𝑋 ∈ ℂ)
5853recnd 10392 . . . 4 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
5957, 58pncan2d 10722 . . 3 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6056, 59eqtrd 2861 . 2 (𝜑 → ((𝐸𝑋) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6128, 45, 603brtr4d 4907 1 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1656   ∈ wcel 2164   class class class wbr 4875   ↦ cmpt 4954  ‘cfv 6127  (class class class)co 6910  ℝcr 10258  0cc0 10259   + caddc 10262   · cmul 10264   < clt 10398   ≤ cle 10399   − cmin 10592   / cdiv 11016  ⌊cfl 12893 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fl 12895 This theorem is referenced by:  fourierdlem63  41178
 Copyright terms: Public domain W3C validator