Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem7 Structured version   Visualization version   GIF version

Theorem fourierdlem7 46143
Description: The difference between the periodic sawtooth function and the identity function is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem7.a (𝜑𝐴 ∈ ℝ)
fourierdlem7.b (𝜑𝐵 ∈ ℝ)
fourierdlem7.altb (𝜑𝐴 < 𝐵)
fourierdlem7.t 𝑇 = (𝐵𝐴)
fourierdlem7.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem7.x (𝜑𝑋 ∈ ℝ)
fourierdlem7.y (𝜑𝑌 ∈ ℝ)
fourierdlem7.xlty (𝜑𝑋𝑌)
Assertion
Ref Expression
fourierdlem7 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑇   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐸(𝑥)

Proof of Theorem fourierdlem7
StepHypRef Expression
1 fourierdlem7.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2 fourierdlem7.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
31, 2resubcld 11665 . . . . 5 (𝜑 → (𝐵𝑌) ∈ ℝ)
4 fourierdlem7.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
61, 5resubcld 11665 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℝ)
74, 6eqeltrid 2838 . . . . 5 (𝜑𝑇 ∈ ℝ)
8 fourierdlem7.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
95, 1posdifd 11824 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
108, 9mpbid 232 . . . . . . 7 (𝜑 → 0 < (𝐵𝐴))
1110, 4breqtrrdi 5161 . . . . . 6 (𝜑 → 0 < 𝑇)
1211gt0ne0d 11801 . . . . 5 (𝜑𝑇 ≠ 0)
133, 7, 12redivcld 12069 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
14 fourierdlem7.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
151, 14resubcld 11665 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℝ)
1615, 7, 12redivcld 12069 . . . 4 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
177, 11elrpd 13048 . . . . 5 (𝜑𝑇 ∈ ℝ+)
18 fourierdlem7.xlty . . . . . 6 (𝜑𝑋𝑌)
1914, 2, 1, 18lesub2dd 11854 . . . . 5 (𝜑 → (𝐵𝑌) ≤ (𝐵𝑋))
203, 15, 17, 19lediv1dd 13109 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇))
21 flwordi 13829 . . . 4 ((((𝐵𝑌) / 𝑇) ∈ ℝ ∧ ((𝐵𝑋) / 𝑇) ∈ ℝ ∧ ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇)) → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2213, 16, 20, 21syl3anc 1373 . . 3 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2313flcld 13815 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
2423zred 12697 . . . 4 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
2516flcld 13815 . . . . 5 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
2625zred 12697 . . . 4 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
2724, 26, 17lemul1d 13094 . . 3 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)) ↔ ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
2822, 27mpbid 232 . 2 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
29 fourierdlem7.e . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3029a1i 11 . . . . 5 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
31 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
32 oveq2 7413 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐵𝑥) = (𝐵𝑌))
3332oveq1d 7420 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
3433fveq2d 6880 . . . . . . . 8 (𝑥 = 𝑌 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
3534oveq1d 7420 . . . . . . 7 (𝑥 = 𝑌 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
3631, 35oveq12d 7423 . . . . . 6 (𝑥 = 𝑌 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3736adantl 481 . . . . 5 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3824, 7remulcld 11265 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
392, 38readdcld 11264 . . . . 5 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
4030, 37, 2, 39fvmptd 6993 . . . 4 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
4140oveq1d 7420 . . 3 (𝜑 → ((𝐸𝑌) − 𝑌) = ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌))
422recnd 11263 . . . 4 (𝜑𝑌 ∈ ℂ)
4338recnd 11263 . . . 4 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℂ)
4442, 43pncan2d 11596 . . 3 (𝜑 → ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
4541, 44eqtrd 2770 . 2 (𝜑 → ((𝐸𝑌) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
46 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
47 oveq2 7413 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
4847oveq1d 7420 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
4948fveq2d 6880 . . . . . . . 8 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
5049oveq1d 7420 . . . . . . 7 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
5146, 50oveq12d 7423 . . . . . 6 (𝑥 = 𝑋 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5251adantl 481 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5326, 7remulcld 11265 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
5414, 53readdcld 11264 . . . . 5 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ ℝ)
5530, 52, 14, 54fvmptd 6993 . . . 4 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5655oveq1d 7420 . . 3 (𝜑 → ((𝐸𝑋) − 𝑋) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋))
5714recnd 11263 . . . 4 (𝜑𝑋 ∈ ℂ)
5853recnd 11263 . . . 4 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
5957, 58pncan2d 11596 . . 3 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6056, 59eqtrd 2770 . 2 (𝜑 → ((𝐸𝑋) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6128, 45, 603brtr4d 5151 1 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cfl 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809
This theorem is referenced by:  fourierdlem63  46198
  Copyright terms: Public domain W3C validator