![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnexpcld | Structured version Visualization version GIF version |
Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
nnexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
nnexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
nnexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | nnexpcl 13263 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) | |
4 | 1, 2, 3 | syl2anc 576 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 (class class class)co 6982 ℕcn 11445 ℕ0cn0 11713 ↑cexp 13250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-nn 11446 df-n0 11714 df-z 11800 df-uz 12065 df-seq 13191 df-exp 13251 |
This theorem is referenced by: bitsp1 15646 bitsfzolem 15649 bitsfzo 15650 bitsmod 15651 bitsfi 15652 bitscmp 15653 bitsinv1lem 15656 bitsinv1 15657 2ebits 15662 bitsinvp1 15664 sadcaddlem 15672 sadadd3 15676 sadaddlem 15681 sadasslem 15685 bitsres 15688 bitsuz 15689 bitsshft 15690 smumullem 15707 smumul 15708 rplpwr 15769 rppwr 15770 pclem 16037 pcprendvds2 16040 pcpre1 16041 pcpremul 16042 pcdvdsb 16067 pcidlem 16070 pcid 16071 pcdvdstr 16074 pcgcd1 16075 pcprmpw2 16080 pcaddlem 16086 pcadd 16087 pcfaclem 16096 pcfac 16097 pcbc 16098 oddprmdvds 16101 prmpwdvds 16102 pockthlem 16103 2expltfac 16288 pgpfi1 18493 sylow1lem1 18496 sylow1lem3 18498 sylow1lem4 18499 sylow1lem5 18500 pgpfi 18503 gexexlem 18740 ablfac1lem 18952 ablfac1b 18954 ablfac1eu 18957 aalioulem2 24640 aalioulem5 24643 aaliou3lem9 24657 isppw2 25409 sgmppw 25490 fsumvma2 25507 pclogsum 25508 chpchtsum 25512 logfacubnd 25514 bposlem1 25577 bposlem5 25581 gausslemma2d 25667 lgseisen 25672 chebbnd1lem1 25762 rpvmasumlem 25780 dchrisum0flblem1 25801 dchrisum0flblem2 25802 ostth2lem2 25927 ostth2lem3 25928 oddpwdc 31289 eulerpartlemgh 31313 expgcd 38656 nn0expgcd 38657 numdenexp 38659 jm3.1lem3 39053 inductionexd 39909 stoweidlem25 41776 stoweidlem45 41796 wallispi2lem1 41822 ovnsubaddlem1 42318 ovolval5lem2 42401 fmtnoodd 43098 fmtnof1 43100 fmtnosqrt 43104 fmtnorec4 43114 odz2prm2pw 43128 fmtnoprmfac1lem 43129 fmtnoprmfac1 43130 fmtnoprmfac2lem1 43131 fmtnoprmfac2 43132 2pwp1prm 43154 lighneallem1 43173 proththdlem 43181 proththd 43182 pw2m1lepw2m1 43978 nnpw2even 43992 logbpw2m1 44030 nnpw2pmod 44046 nnpw2p 44049 nnolog2flm1 44053 dignn0flhalflem1 44078 |
Copyright terms: Public domain | W3C validator |