Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnfuz Structured version   Visualization version   GIF version

Theorem limsupmnfuz 40470
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnfuz.1 𝑗𝐹
limsupmnfuz.2 (𝜑𝑀 ∈ ℤ)
limsupmnfuz.3 𝑍 = (ℤ𝑀)
limsupmnfuz.4 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupmnfuz (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)   𝑍(𝑗)

Proof of Theorem limsupmnfuz
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupmnfuz.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupmnfuz.3 . . 3 𝑍 = (ℤ𝑀)
3 limsupmnfuz.4 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3limsupmnfuzlem 40469 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦))
5 breq2 4790 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑙) ≤ 𝑥))
65ralbidv 3135 . . . . . 6 (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
76rexbidv 3200 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥))
8 fveq2 6330 . . . . . . . . 9 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
98raleqdv 3293 . . . . . . . 8 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥))
10 limsupmnfuz.1 . . . . . . . . . . . 12 𝑗𝐹
11 nfcv 2913 . . . . . . . . . . . 12 𝑗𝑙
1210, 11nffv 6337 . . . . . . . . . . 11 𝑗(𝐹𝑙)
13 nfcv 2913 . . . . . . . . . . 11 𝑗
14 nfcv 2913 . . . . . . . . . . 11 𝑗𝑥
1512, 13, 14nfbr 4833 . . . . . . . . . 10 𝑗(𝐹𝑙) ≤ 𝑥
16 nfv 1995 . . . . . . . . . 10 𝑙(𝐹𝑗) ≤ 𝑥
17 fveq2 6330 . . . . . . . . . . 11 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1817breq1d 4796 . . . . . . . . . 10 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
1915, 16, 18cbvral 3316 . . . . . . . . 9 (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
2019a1i 11 . . . . . . . 8 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑘)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
219, 20bitrd 268 . . . . . . 7 (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2221cbvrexv 3321 . . . . . 6 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
2322a1i 11 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
247, 23bitrd 268 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
2524cbvralv 3320 . . 3 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
2625a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(𝐹𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
274, 26bitrd 268 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145  wnfc 2900  wral 3061  wrex 3062   class class class wbr 4786  wf 6025  cfv 6029  cr 10135  -∞cmnf 10272  *cxr 10273  cle 10275  cz 11577  cuz 11886  lim supclsp 14402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-sup 8502  df-inf 8503  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-n0 11493  df-z 11578  df-uz 11887  df-ico 12379  df-fl 12794  df-ceil 12795  df-limsup 14403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator