![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupmnfuz | Structured version Visualization version GIF version |
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupmnfuz.1 | ⊢ Ⅎ𝑗𝐹 |
limsupmnfuz.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupmnfuz.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupmnfuz.4 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
Ref | Expression |
---|---|
limsupmnfuz | ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupmnfuz.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | limsupmnfuz.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | limsupmnfuz.4 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
4 | 1, 2, 3 | limsupmnfuzlem 44315 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦)) |
5 | breq2 5148 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
6 | 5 | ralbidv 3178 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
7 | 6 | rexbidv 3179 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥)) |
8 | fveq2 6881 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (ℤ≥‘𝑖) = (ℤ≥‘𝑘)) | |
9 | 8 | raleqdv 3326 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥)) |
10 | limsupmnfuz.1 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝐹 | |
11 | nfcv 2904 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑙 | |
12 | 10, 11 | nffv 6891 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
13 | nfcv 2904 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 ≤ | |
14 | nfcv 2904 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗𝑥 | |
15 | 12, 13, 14 | nfbr 5191 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
16 | nfv 1918 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝐹‘𝑗) ≤ 𝑥 | |
17 | fveq2 6881 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
18 | 17 | breq1d 5154 | . . . . . . . . . 10 ⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
19 | 15, 16, 18 | cbvralw 3304 | . . . . . . . . 9 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
20 | 19 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ≥‘𝑘)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
21 | 9, 20 | bitrd 279 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
22 | 21 | cbvrexvw 3236 | . . . . . 6 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
23 | 22 | a1i 11 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑥 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
24 | 7, 23 | bitrd 279 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
25 | 24 | cbvralvw 3235 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(𝐹‘𝑙) ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
27 | 4, 26 | bitrd 279 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 Ⅎwnfc 2884 ∀wral 3062 ∃wrex 3071 class class class wbr 5144 ⟶wf 6531 ‘cfv 6535 ℝcr 11096 -∞cmnf 11233 ℝ*cxr 11234 ≤ cle 11236 ℤcz 12545 ℤ≥cuz 12809 lim supclsp 15401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-sup 9424 df-inf 9425 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-n0 12460 df-z 12546 df-uz 12810 df-ico 13317 df-fl 13744 df-ceil 13745 df-limsup 15402 |
This theorem is referenced by: liminfpnfuz 44405 xlimmnflimsup2 44441 xlimmnflimsup 44445 |
Copyright terms: Public domain | W3C validator |