Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnflimsup2 Structured version   Visualization version   GIF version

Theorem xlimmnflimsup2 42537
 Description: A sequence of extended reals converges to -∞ if and only if its superior limit is also -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimmnflimsup2.m (𝜑𝑀 ∈ ℤ)
xlimmnflimsup2.z 𝑍 = (ℤ𝑀)
xlimmnflimsup2.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimmnflimsup2 (𝜑 → (𝐹~~>*-∞ ↔ (lim sup‘𝐹) = -∞))

Proof of Theorem xlimmnflimsup2
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimmnflimsup2.m . . 3 (𝜑𝑀 ∈ ℤ)
2 xlimmnflimsup2.z . . 3 𝑍 = (ℤ𝑀)
3 xlimmnflimsup2.f . . 3 (𝜑𝐹:𝑍⟶ℝ*)
41, 2, 3xlimmnfv 42519 . 2 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
5 nfcv 2955 . . 3 𝑗𝐹
65, 1, 2, 3limsupmnfuz 42412 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
74, 6bitr4d 285 1 (𝜑 → (𝐹~~>*-∞ ↔ (lim sup‘𝐹) = -∞))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   class class class wbr 5031  ⟶wf 6321  ‘cfv 6325  ℝcr 10528  -∞cmnf 10665  ℝ*cxr 10666   ≤ cle 10668  ℤcz 11972  ℤ≥cuz 12234  lim supclsp 14822  ~~>*clsxlim 42503 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-pm 8395  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fi 8862  df-sup 8893  df-inf 8894  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-ioo 12733  df-ioc 12734  df-ico 12735  df-icc 12736  df-fl 13160  df-ceil 13161  df-limsup 14823  df-topgen 16712  df-ordt 16769  df-ps 17805  df-tsr 17806  df-top 21509  df-topon 21526  df-bases 21561  df-lm 21844  df-xlim 42504 This theorem is referenced by:  xlimliminflimsup  42547
 Copyright terms: Public domain W3C validator