| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimmnflimsup | Structured version Visualization version GIF version | ||
| Description: If a sequence of extended reals converges to -∞ then its superior limit is also -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| Ref | Expression |
|---|---|
| xlimmnflimsup.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimmnflimsup.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimmnflimsup.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| xlimmnflimsup.c | ⊢ (𝜑 → 𝐹~~>*-∞) |
| Ref | Expression |
|---|---|
| xlimmnflimsup | ⊢ (𝜑 → (lim sup‘𝐹) = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimmnflimsup.c | . . 3 ⊢ (𝜑 → 𝐹~~>*-∞) | |
| 2 | xlimmnflimsup.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | xlimmnflimsup.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | xlimmnflimsup.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 5 | 2, 3, 4 | xlimmnfv 45805 | . . 3 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 6 | 1, 5 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 7 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑗𝐹 | |
| 8 | 7, 2, 3, 4 | limsupmnfuz 45698 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 9 | 6, 8 | mpbird 257 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 ℝcr 11043 -∞cmnf 11182 ℝ*cxr 11183 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 lim supclsp 15412 ~~>*clsxlim 45789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fl 13730 df-ceil 13731 df-limsup 15413 df-topgen 17382 df-ordt 17440 df-ps 18501 df-tsr 18502 df-top 22757 df-topon 22774 df-bases 22809 df-lm 23092 df-xlim 45790 |
| This theorem is referenced by: xlimliminflimsup 45833 |
| Copyright terms: Public domain | W3C validator |