Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmcn2 | Structured version Visualization version GIF version |
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.) |
Ref | Expression |
---|---|
txlm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
txlm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
txlm.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
txlm.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
txlm.f | ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
txlm.g | ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) |
lmcn2.fl | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) |
lmcn2.gl | ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) |
lmcn2.o | ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
lmcn2.h | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
Ref | Expression |
---|---|
lmcn2 | ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txlm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) | |
2 | 1 | ffvelrnda 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑋) |
3 | txlm.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) | |
4 | 3 | ffvelrnda 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ 𝑌) |
5 | 2, 4 | opelxpd 5618 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) |
6 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
7 | txlm.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
8 | txlm.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
9 | txtopon 22650 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | |
10 | 7, 8, 9 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
11 | lmcn2.o | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | |
12 | cntop2 22300 | . . . . . . . . 9 ⊢ (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top) | |
13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ Top) |
14 | toptopon2 21975 | . . . . . . . 8 ⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) | |
15 | 13, 14 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
16 | cnf2 22308 | . . . . . . 7 ⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) | |
17 | 10, 15, 11, 16 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) |
18 | 17 | feqmptd 6819 | . . . . 5 ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂‘𝑥))) |
19 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
20 | df-ov 7258 | . . . . . 6 ⊢ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
21 | 19, 20 | eqtr4di 2797 | . . . . 5 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
22 | 5, 6, 18, 21 | fmptco 6983 | . . . 4 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)))) |
23 | lmcn2.h | . . . 4 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) | |
24 | 22, 23 | eqtr4di 2797 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = 𝐻) |
25 | lmcn2.fl | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) | |
26 | lmcn2.gl | . . . . 5 ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) | |
27 | txlm.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
28 | txlm.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
29 | eqid 2738 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
30 | 27, 28, 7, 8, 1, 3, 29 | txlm 22707 | . . . . 5 ⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) |
31 | 25, 26, 30 | mpbi2and 708 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉) |
32 | 31, 11 | lmcn 22364 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉))(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
33 | 24, 32 | eqbrtrrd 5094 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
34 | df-ov 7258 | . 2 ⊢ (𝑅𝑂𝑆) = (𝑂‘〈𝑅, 𝑆〉) | |
35 | 33, 34 | breqtrrdi 5112 | 1 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℤcz 12249 ℤ≥cuz 12511 Topctop 21950 TopOnctopon 21967 Cn ccn 22283 ⇝𝑡clm 22285 ×t ctx 22619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-z 12250 df-uz 12512 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 df-cnp 22287 df-lm 22288 df-tx 22621 |
This theorem is referenced by: hlimadd 29456 |
Copyright terms: Public domain | W3C validator |