| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcn2 | Structured version Visualization version GIF version | ||
| Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.) |
| Ref | Expression |
|---|---|
| txlm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| txlm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| txlm.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| txlm.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| txlm.f | ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
| txlm.g | ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) |
| lmcn2.fl | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) |
| lmcn2.gl | ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) |
| lmcn2.o | ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| lmcn2.h | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
| Ref | Expression |
|---|---|
| lmcn2 | ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txlm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) | |
| 2 | 1 | ffvelcdmda 7059 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑋) |
| 3 | txlm.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) | |
| 4 | 3 | ffvelcdmda 7059 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ 𝑌) |
| 5 | 2, 4 | opelxpd 5680 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) |
| 6 | eqidd 2731 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
| 7 | txlm.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 8 | txlm.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 9 | txtopon 23485 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 11 | lmcn2.o | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | |
| 12 | cntop2 23135 | . . . . . . . . 9 ⊢ (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top) | |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ Top) |
| 14 | toptopon2 22812 | . . . . . . . 8 ⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) | |
| 15 | 13, 14 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 16 | cnf2 23143 | . . . . . . 7 ⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) | |
| 17 | 10, 15, 11, 16 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) |
| 18 | 17 | feqmptd 6932 | . . . . 5 ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂‘𝑥))) |
| 19 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
| 20 | df-ov 7393 | . . . . . 6 ⊢ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
| 21 | 19, 20 | eqtr4di 2783 | . . . . 5 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
| 22 | 5, 6, 18, 21 | fmptco 7104 | . . . 4 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)))) |
| 23 | lmcn2.h | . . . 4 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) | |
| 24 | 22, 23 | eqtr4di 2783 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = 𝐻) |
| 25 | lmcn2.fl | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) | |
| 26 | lmcn2.gl | . . . . 5 ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) | |
| 27 | txlm.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 28 | txlm.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 29 | eqid 2730 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
| 30 | 27, 28, 7, 8, 1, 3, 29 | txlm 23542 | . . . . 5 ⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) |
| 31 | 25, 26, 30 | mpbi2and 712 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉) |
| 32 | 31, 11 | lmcn 23199 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉))(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
| 33 | 24, 32 | eqbrtrrd 5134 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
| 34 | df-ov 7393 | . 2 ⊢ (𝑅𝑂𝑆) = (𝑂‘〈𝑅, 𝑆〉) | |
| 35 | 33, 34 | breqtrrdi 5152 | 1 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 ∪ cuni 4874 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℤcz 12536 ℤ≥cuz 12800 Topctop 22787 TopOnctopon 22804 Cn ccn 23118 ⇝𝑡clm 23120 ×t ctx 23454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-z 12537 df-uz 12801 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-cn 23121 df-cnp 23122 df-lm 23123 df-tx 23456 |
| This theorem is referenced by: hlimadd 31129 |
| Copyright terms: Public domain | W3C validator |