| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcn2 | Structured version Visualization version GIF version | ||
| Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.) |
| Ref | Expression |
|---|---|
| txlm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| txlm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| txlm.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| txlm.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| txlm.f | ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
| txlm.g | ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) |
| lmcn2.fl | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) |
| lmcn2.gl | ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) |
| lmcn2.o | ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| lmcn2.h | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
| Ref | Expression |
|---|---|
| lmcn2 | ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txlm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) | |
| 2 | 1 | ffvelcdmda 7074 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑋) |
| 3 | txlm.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) | |
| 4 | 3 | ffvelcdmda 7074 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ 𝑌) |
| 5 | 2, 4 | opelxpd 5693 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) |
| 6 | eqidd 2736 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
| 7 | txlm.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 8 | txlm.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 9 | txtopon 23529 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 11 | lmcn2.o | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | |
| 12 | cntop2 23179 | . . . . . . . . 9 ⊢ (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top) | |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ Top) |
| 14 | toptopon2 22856 | . . . . . . . 8 ⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) | |
| 15 | 13, 14 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 16 | cnf2 23187 | . . . . . . 7 ⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) | |
| 17 | 10, 15, 11, 16 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) |
| 18 | 17 | feqmptd 6947 | . . . . 5 ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂‘𝑥))) |
| 19 | fveq2 6876 | . . . . . 6 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
| 20 | df-ov 7408 | . . . . . 6 ⊢ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
| 21 | 19, 20 | eqtr4di 2788 | . . . . 5 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
| 22 | 5, 6, 18, 21 | fmptco 7119 | . . . 4 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)))) |
| 23 | lmcn2.h | . . . 4 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) | |
| 24 | 22, 23 | eqtr4di 2788 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = 𝐻) |
| 25 | lmcn2.fl | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) | |
| 26 | lmcn2.gl | . . . . 5 ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) | |
| 27 | txlm.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 28 | txlm.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 29 | eqid 2735 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
| 30 | 27, 28, 7, 8, 1, 3, 29 | txlm 23586 | . . . . 5 ⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) |
| 31 | 25, 26, 30 | mpbi2and 712 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉) |
| 32 | 31, 11 | lmcn 23243 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉))(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
| 33 | 24, 32 | eqbrtrrd 5143 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
| 34 | df-ov 7408 | . 2 ⊢ (𝑅𝑂𝑆) = (𝑂‘〈𝑅, 𝑆〉) | |
| 35 | 33, 34 | breqtrrdi 5161 | 1 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 ∪ cuni 4883 class class class wbr 5119 ↦ cmpt 5201 × cxp 5652 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℤcz 12588 ℤ≥cuz 12852 Topctop 22831 TopOnctopon 22848 Cn ccn 23162 ⇝𝑡clm 23164 ×t ctx 23498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-z 12589 df-uz 12853 df-topgen 17457 df-top 22832 df-topon 22849 df-bases 22884 df-cn 23165 df-cnp 23166 df-lm 23167 df-tx 23500 |
| This theorem is referenced by: hlimadd 31174 |
| Copyright terms: Public domain | W3C validator |