MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcn2 Structured version   Visualization version   GIF version

Theorem lmcn2 22907
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z 𝑍 = (ℤ𝑀)
txlm.m (𝜑𝑀 ∈ ℤ)
txlm.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txlm.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txlm.f (𝜑𝐹:𝑍𝑋)
txlm.g (𝜑𝐺:𝑍𝑌)
lmcn2.fl (𝜑𝐹(⇝𝑡𝐽)𝑅)
lmcn2.gl (𝜑𝐺(⇝𝑡𝐾)𝑆)
lmcn2.o (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
lmcn2.h 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
Assertion
Ref Expression
lmcn2 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑂   𝜑,𝑛   𝑛,𝐺   𝑛,𝐽   𝑛,𝐾   𝑛,𝑋   𝑛,𝑌   𝑛,𝑍
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem lmcn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7 (𝜑𝐹:𝑍𝑋)
21ffvelcdmda 7018 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑋)
3 txlm.g . . . . . . 7 (𝜑𝐺:𝑍𝑌)
43ffvelcdmda 7018 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ 𝑌)
52, 4opelxpd 5659 . . . . 5 ((𝜑𝑛𝑍) → ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑋 × 𝑌))
6 eqidd 2737 . . . . 5 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
7 txlm.j . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 txlm.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
9 txtopon 22849 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
107, 8, 9syl2anc 584 . . . . . . 7 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
11 lmcn2.o . . . . . . . . 9 (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
12 cntop2 22499 . . . . . . . . 9 (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top)
1311, 12syl 17 . . . . . . . 8 (𝜑𝑁 ∈ Top)
14 toptopon2 22174 . . . . . . . 8 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
1513, 14sylib 217 . . . . . . 7 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
16 cnf2 22507 . . . . . . 7 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1710, 15, 11, 16syl3anc 1370 . . . . . 6 (𝜑𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1817feqmptd 6894 . . . . 5 (𝜑𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂𝑥)))
19 fveq2 6826 . . . . . 6 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩))
20 df-ov 7341 . . . . . 6 ((𝐹𝑛)𝑂(𝐺𝑛)) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩)
2119, 20eqtr4di 2794 . . . . 5 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = ((𝐹𝑛)𝑂(𝐺𝑛)))
225, 6, 18, 21fmptco 7058 . . . 4 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛))))
23 lmcn2.h . . . 4 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
2422, 23eqtr4di 2794 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = 𝐻)
25 lmcn2.fl . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑅)
26 lmcn2.gl . . . . 5 (𝜑𝐺(⇝𝑡𝐾)𝑆)
27 txlm.z . . . . . 6 𝑍 = (ℤ𝑀)
28 txlm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
29 eqid 2736 . . . . . 6 (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
3027, 28, 7, 8, 1, 3, 29txlm 22906 . . . . 5 (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩))
3125, 26, 30mpbi2and 709 . . . 4 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩)
3231, 11lmcn 22563 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
3324, 32eqbrtrrd 5117 . 2 (𝜑𝐻(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
34 df-ov 7341 . 2 (𝑅𝑂𝑆) = (𝑂‘⟨𝑅, 𝑆⟩)
3533, 34breqtrrdi 5135 1 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cop 4580   cuni 4853   class class class wbr 5093  cmpt 5176   × cxp 5619  ccom 5625  wf 6476  cfv 6480  (class class class)co 7338  cz 12421  cuz 12684  Topctop 22149  TopOnctopon 22166   Cn ccn 22482  𝑡clm 22484   ×t ctx 22818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-er 8570  df-map 8689  df-pm 8690  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-z 12422  df-uz 12685  df-topgen 17252  df-top 22150  df-topon 22167  df-bases 22203  df-cn 22485  df-cnp 22486  df-lm 22487  df-tx 22820
This theorem is referenced by:  hlimadd  29844
  Copyright terms: Public domain W3C validator