MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcn2 Structured version   Visualization version   GIF version

Theorem lmcn2 23587
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z 𝑍 = (ℤ𝑀)
txlm.m (𝜑𝑀 ∈ ℤ)
txlm.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txlm.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txlm.f (𝜑𝐹:𝑍𝑋)
txlm.g (𝜑𝐺:𝑍𝑌)
lmcn2.fl (𝜑𝐹(⇝𝑡𝐽)𝑅)
lmcn2.gl (𝜑𝐺(⇝𝑡𝐾)𝑆)
lmcn2.o (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
lmcn2.h 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
Assertion
Ref Expression
lmcn2 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑂   𝜑,𝑛   𝑛,𝐺   𝑛,𝐽   𝑛,𝐾   𝑛,𝑋   𝑛,𝑌   𝑛,𝑍
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem lmcn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7 (𝜑𝐹:𝑍𝑋)
21ffvelcdmda 7074 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑋)
3 txlm.g . . . . . . 7 (𝜑𝐺:𝑍𝑌)
43ffvelcdmda 7074 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ 𝑌)
52, 4opelxpd 5693 . . . . 5 ((𝜑𝑛𝑍) → ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑋 × 𝑌))
6 eqidd 2736 . . . . 5 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
7 txlm.j . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 txlm.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
9 txtopon 23529 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
107, 8, 9syl2anc 584 . . . . . . 7 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
11 lmcn2.o . . . . . . . . 9 (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
12 cntop2 23179 . . . . . . . . 9 (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top)
1311, 12syl 17 . . . . . . . 8 (𝜑𝑁 ∈ Top)
14 toptopon2 22856 . . . . . . . 8 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
1513, 14sylib 218 . . . . . . 7 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
16 cnf2 23187 . . . . . . 7 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1710, 15, 11, 16syl3anc 1373 . . . . . 6 (𝜑𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1817feqmptd 6947 . . . . 5 (𝜑𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂𝑥)))
19 fveq2 6876 . . . . . 6 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩))
20 df-ov 7408 . . . . . 6 ((𝐹𝑛)𝑂(𝐺𝑛)) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩)
2119, 20eqtr4di 2788 . . . . 5 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = ((𝐹𝑛)𝑂(𝐺𝑛)))
225, 6, 18, 21fmptco 7119 . . . 4 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛))))
23 lmcn2.h . . . 4 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
2422, 23eqtr4di 2788 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = 𝐻)
25 lmcn2.fl . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑅)
26 lmcn2.gl . . . . 5 (𝜑𝐺(⇝𝑡𝐾)𝑆)
27 txlm.z . . . . . 6 𝑍 = (ℤ𝑀)
28 txlm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
29 eqid 2735 . . . . . 6 (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
3027, 28, 7, 8, 1, 3, 29txlm 23586 . . . . 5 (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩))
3125, 26, 30mpbi2and 712 . . . 4 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩)
3231, 11lmcn 23243 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
3324, 32eqbrtrrd 5143 . 2 (𝜑𝐻(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
34 df-ov 7408 . 2 (𝑅𝑂𝑆) = (𝑂‘⟨𝑅, 𝑆⟩)
3533, 34breqtrrdi 5161 1 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4607   cuni 4883   class class class wbr 5119  cmpt 5201   × cxp 5652  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  cz 12588  cuz 12852  Topctop 22831  TopOnctopon 22848   Cn ccn 23162  𝑡clm 23164   ×t ctx 23498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-z 12589  df-uz 12853  df-topgen 17457  df-top 22832  df-topon 22849  df-bases 22884  df-cn 23165  df-cnp 23166  df-lm 23167  df-tx 23500
This theorem is referenced by:  hlimadd  31174
  Copyright terms: Public domain W3C validator