| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatlssel | Structured version Visualization version GIF version | ||
| Description: An atom is a subspace. (Contributed by NM, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| lsatlss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatlss.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lssatssel.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lssatssel.u | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lsatlssel | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssatssel.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lsatlss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lsatlss.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 4 | 2, 3 | lsatlss 38962 | . . 3 ⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| 6 | lssatssel.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
| 7 | 5, 6 | sseldd 3944 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 LModclmod 20742 LSubSpclss 20813 LSAtomsclsa 38940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lsatoms 38942 |
| This theorem is referenced by: lsatssv 38964 lsatssn0 38968 lsatcmp 38969 lsatel 38971 lsatelbN 38972 lrelat 38980 lcvat 38996 lsatcv0 38997 lsatcveq0 38998 lcvp 39006 lcv1 39007 lcv2 39008 lsatexch 39009 lsatnem0 39011 lsatexch1 39012 lsatcv0eq 39013 lsatcv1 39014 lsatcvatlem 39015 lsatcvat 39016 lsatcvat2 39017 lsatcvat3 39018 l1cvat 39021 dochsat 41350 dihsmatrn 41403 dvh3dimatN 41406 dvh2dimatN 41407 dochsatshp 41418 dochexmidlem1 41427 dochexmidlem4 41430 dochexmidlem5 41431 dochexmidlem6 41432 dochexmidlem7 41433 lcfrlem29 41538 lcfrlem35 41544 mapd1dim2lem1N 41611 mapdcnvatN 41633 mapdat 41634 |
| Copyright terms: Public domain | W3C validator |