Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththdlem Structured version   Visualization version   GIF version

Theorem proththdlem 47537
Description: Lemma for proththd 47538. (Contributed by AV, 4-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
Assertion
Ref Expression
proththdlem (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))

Proof of Theorem proththdlem
StepHypRef Expression
1 proththd.p . 2 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
2 proththd.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
3 2nn 12336 . . . . . . . 8 2 ∈ ℕ
43a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ)
5 proththd.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12584 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
74, 6nnexpcld 14280 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℕ)
82, 7nnmulcld 12316 . . . . 5 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℕ)
98peano2nnd 12280 . . . 4 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ)
10 1m1e0 12335 . . . . . 6 (1 − 1) = 0
118nngt0d 12312 . . . . . 6 (𝜑 → 0 < (𝐾 · (2↑𝑁)))
1210, 11eqbrtrid 5182 . . . . 5 (𝜑 → (1 − 1) < (𝐾 · (2↑𝑁)))
13 1red 11259 . . . . . 6 (𝜑 → 1 ∈ ℝ)
148nnred 12278 . . . . . 6 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℝ)
1513, 13, 14ltsubaddd 11856 . . . . 5 (𝜑 → ((1 − 1) < (𝐾 · (2↑𝑁)) ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
1612, 15mpbid 232 . . . 4 (𝜑 → 1 < ((𝐾 · (2↑𝑁)) + 1))
178nncnd 12279 . . . . . . 7 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℂ)
18 pncan1 11684 . . . . . . 7 ((𝐾 · (2↑𝑁)) ∈ ℂ → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
1917, 18syl 17 . . . . . 6 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
2019oveq1d 7445 . . . . 5 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) = ((𝐾 · (2↑𝑁)) / 2))
21 2z 12646 . . . . . . . . 9 2 ∈ ℤ
2221a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
232nnzd 12637 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
247nnzd 12637 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℤ)
2522, 23, 243jca 1127 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ))
26 iddvdsexp 16313 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑁))
2722, 5, 26syl2anc 584 . . . . . . 7 (𝜑 → 2 ∥ (2↑𝑁))
28 dvdsmultr2 16331 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2 ∥ (2↑𝑁) → 2 ∥ (𝐾 · (2↑𝑁))))
2925, 27, 28sylc 65 . . . . . 6 (𝜑 → 2 ∥ (𝐾 · (2↑𝑁)))
30 nndivdvds 16295 . . . . . . 7 (((𝐾 · (2↑𝑁)) ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
318, 4, 30syl2anc 584 . . . . . 6 (𝜑 → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
3229, 31mpbid 232 . . . . 5 (𝜑 → ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ)
3320, 32eqeltrd 2838 . . . 4 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)
349, 16, 333jca 1127 . . 3 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
35 eleq1 2826 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ↔ ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ))
36 breq2 5151 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (1 < 𝑃 ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
37 oveq1 7437 . . . . . 6 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 − 1) = (((𝐾 · (2↑𝑁)) + 1) − 1))
3837oveq1d 7445 . . . . 5 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 − 1) / 2) = ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2))
3938eleq1d 2823 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (((𝑃 − 1) / 2) ∈ ℕ ↔ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
4035, 36, 393anbi123d 1435 . . 3 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) ↔ (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)))
4134, 40syl5ibrcom 247 . 2 (𝜑 → (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)))
421, 41mpd 15 1 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1536  wcel 2105   class class class wbr 5147  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  cz 12610  cexp 14098  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-exp 14099  df-dvds 16287
This theorem is referenced by:  proththd  47538
  Copyright terms: Public domain W3C validator