Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththdlem Structured version   Visualization version   GIF version

Theorem proththdlem 47600
Description: Lemma for proththd 47601. (Contributed by AV, 4-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
Assertion
Ref Expression
proththdlem (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))

Proof of Theorem proththdlem
StepHypRef Expression
1 proththd.p . 2 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
2 proththd.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
3 2nn 12339 . . . . . . . 8 2 ∈ ℕ
43a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ)
5 proththd.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12587 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
74, 6nnexpcld 14284 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℕ)
82, 7nnmulcld 12319 . . . . 5 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℕ)
98peano2nnd 12283 . . . 4 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ)
10 1m1e0 12338 . . . . . 6 (1 − 1) = 0
118nngt0d 12315 . . . . . 6 (𝜑 → 0 < (𝐾 · (2↑𝑁)))
1210, 11eqbrtrid 5178 . . . . 5 (𝜑 → (1 − 1) < (𝐾 · (2↑𝑁)))
13 1red 11262 . . . . . 6 (𝜑 → 1 ∈ ℝ)
148nnred 12281 . . . . . 6 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℝ)
1513, 13, 14ltsubaddd 11859 . . . . 5 (𝜑 → ((1 − 1) < (𝐾 · (2↑𝑁)) ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
1612, 15mpbid 232 . . . 4 (𝜑 → 1 < ((𝐾 · (2↑𝑁)) + 1))
178nncnd 12282 . . . . . . 7 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℂ)
18 pncan1 11687 . . . . . . 7 ((𝐾 · (2↑𝑁)) ∈ ℂ → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
1917, 18syl 17 . . . . . 6 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
2019oveq1d 7446 . . . . 5 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) = ((𝐾 · (2↑𝑁)) / 2))
21 2z 12649 . . . . . . . . 9 2 ∈ ℤ
2221a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
232nnzd 12640 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
247nnzd 12640 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℤ)
2522, 23, 243jca 1129 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ))
26 iddvdsexp 16317 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑁))
2722, 5, 26syl2anc 584 . . . . . . 7 (𝜑 → 2 ∥ (2↑𝑁))
28 dvdsmultr2 16335 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2 ∥ (2↑𝑁) → 2 ∥ (𝐾 · (2↑𝑁))))
2925, 27, 28sylc 65 . . . . . 6 (𝜑 → 2 ∥ (𝐾 · (2↑𝑁)))
30 nndivdvds 16299 . . . . . . 7 (((𝐾 · (2↑𝑁)) ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
318, 4, 30syl2anc 584 . . . . . 6 (𝜑 → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
3229, 31mpbid 232 . . . . 5 (𝜑 → ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ)
3320, 32eqeltrd 2841 . . . 4 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)
349, 16, 333jca 1129 . . 3 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
35 eleq1 2829 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ↔ ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ))
36 breq2 5147 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (1 < 𝑃 ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
37 oveq1 7438 . . . . . 6 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 − 1) = (((𝐾 · (2↑𝑁)) + 1) − 1))
3837oveq1d 7446 . . . . 5 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 − 1) / 2) = ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2))
3938eleq1d 2826 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (((𝑃 − 1) / 2) ∈ ℕ ↔ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
4035, 36, 393anbi123d 1438 . . 3 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) ↔ (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)))
4134, 40syl5ibrcom 247 . 2 (𝜑 → (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)))
421, 41mpd 15 1 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  cz 12613  cexp 14102  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103  df-dvds 16291
This theorem is referenced by:  proththd  47601
  Copyright terms: Public domain W3C validator