Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththdlem Structured version   Visualization version   GIF version

Theorem proththdlem 44953
Description: Lemma for proththd 44954. (Contributed by AV, 4-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
Assertion
Ref Expression
proththdlem (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))

Proof of Theorem proththdlem
StepHypRef Expression
1 proththd.p . 2 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
2 proththd.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
3 2nn 11976 . . . . . . . 8 2 ∈ ℕ
43a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ)
5 proththd.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12223 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
74, 6nnexpcld 13888 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℕ)
82, 7nnmulcld 11956 . . . . 5 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℕ)
98peano2nnd 11920 . . . 4 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ)
10 1m1e0 11975 . . . . . 6 (1 − 1) = 0
118nngt0d 11952 . . . . . 6 (𝜑 → 0 < (𝐾 · (2↑𝑁)))
1210, 11eqbrtrid 5105 . . . . 5 (𝜑 → (1 − 1) < (𝐾 · (2↑𝑁)))
13 1red 10907 . . . . . 6 (𝜑 → 1 ∈ ℝ)
148nnred 11918 . . . . . 6 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℝ)
1513, 13, 14ltsubaddd 11501 . . . . 5 (𝜑 → ((1 − 1) < (𝐾 · (2↑𝑁)) ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
1612, 15mpbid 231 . . . 4 (𝜑 → 1 < ((𝐾 · (2↑𝑁)) + 1))
178nncnd 11919 . . . . . . 7 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℂ)
18 pncan1 11329 . . . . . . 7 ((𝐾 · (2↑𝑁)) ∈ ℂ → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
1917, 18syl 17 . . . . . 6 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
2019oveq1d 7270 . . . . 5 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) = ((𝐾 · (2↑𝑁)) / 2))
21 2z 12282 . . . . . . . . 9 2 ∈ ℤ
2221a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
232nnzd 12354 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
247nnzd 12354 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℤ)
2522, 23, 243jca 1126 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ))
26 iddvdsexp 15917 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑁))
2722, 5, 26syl2anc 583 . . . . . . 7 (𝜑 → 2 ∥ (2↑𝑁))
28 dvdsmultr2 15935 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2 ∥ (2↑𝑁) → 2 ∥ (𝐾 · (2↑𝑁))))
2925, 27, 28sylc 65 . . . . . 6 (𝜑 → 2 ∥ (𝐾 · (2↑𝑁)))
30 nndivdvds 15900 . . . . . . 7 (((𝐾 · (2↑𝑁)) ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
318, 4, 30syl2anc 583 . . . . . 6 (𝜑 → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
3229, 31mpbid 231 . . . . 5 (𝜑 → ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ)
3320, 32eqeltrd 2839 . . . 4 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)
349, 16, 333jca 1126 . . 3 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
35 eleq1 2826 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ↔ ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ))
36 breq2 5074 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (1 < 𝑃 ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
37 oveq1 7262 . . . . . 6 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 − 1) = (((𝐾 · (2↑𝑁)) + 1) − 1))
3837oveq1d 7270 . . . . 5 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 − 1) / 2) = ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2))
3938eleq1d 2823 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (((𝑃 − 1) / 2) ∈ ℕ ↔ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
4035, 36, 393anbi123d 1434 . . 3 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) ↔ (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)))
4134, 40syl5ibrcom 246 . 2 (𝜑 → (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)))
421, 41mpd 15 1 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  cz 12249  cexp 13710  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711  df-dvds 15892
This theorem is referenced by:  proththd  44954
  Copyright terms: Public domain W3C validator