Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththdlem Structured version   Visualization version   GIF version

Theorem proththdlem 44738
Description: Lemma for proththd 44739. (Contributed by AV, 4-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
Assertion
Ref Expression
proththdlem (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))

Proof of Theorem proththdlem
StepHypRef Expression
1 proththd.p . 2 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
2 proththd.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
3 2nn 11903 . . . . . . . 8 2 ∈ ℕ
43a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ)
5 proththd.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12150 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
74, 6nnexpcld 13812 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℕ)
82, 7nnmulcld 11883 . . . . 5 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℕ)
98peano2nnd 11847 . . . 4 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ)
10 1m1e0 11902 . . . . . 6 (1 − 1) = 0
118nngt0d 11879 . . . . . 6 (𝜑 → 0 < (𝐾 · (2↑𝑁)))
1210, 11eqbrtrid 5088 . . . . 5 (𝜑 → (1 − 1) < (𝐾 · (2↑𝑁)))
13 1red 10834 . . . . . 6 (𝜑 → 1 ∈ ℝ)
148nnred 11845 . . . . . 6 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℝ)
1513, 13, 14ltsubaddd 11428 . . . . 5 (𝜑 → ((1 − 1) < (𝐾 · (2↑𝑁)) ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
1612, 15mpbid 235 . . . 4 (𝜑 → 1 < ((𝐾 · (2↑𝑁)) + 1))
178nncnd 11846 . . . . . . 7 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℂ)
18 pncan1 11256 . . . . . . 7 ((𝐾 · (2↑𝑁)) ∈ ℂ → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
1917, 18syl 17 . . . . . 6 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
2019oveq1d 7228 . . . . 5 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) = ((𝐾 · (2↑𝑁)) / 2))
21 2z 12209 . . . . . . . . 9 2 ∈ ℤ
2221a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
232nnzd 12281 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
247nnzd 12281 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℤ)
2522, 23, 243jca 1130 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ))
26 iddvdsexp 15841 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑁))
2722, 5, 26syl2anc 587 . . . . . . 7 (𝜑 → 2 ∥ (2↑𝑁))
28 dvdsmultr2 15859 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2 ∥ (2↑𝑁) → 2 ∥ (𝐾 · (2↑𝑁))))
2925, 27, 28sylc 65 . . . . . 6 (𝜑 → 2 ∥ (𝐾 · (2↑𝑁)))
30 nndivdvds 15824 . . . . . . 7 (((𝐾 · (2↑𝑁)) ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
318, 4, 30syl2anc 587 . . . . . 6 (𝜑 → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
3229, 31mpbid 235 . . . . 5 (𝜑 → ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ)
3320, 32eqeltrd 2838 . . . 4 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)
349, 16, 333jca 1130 . . 3 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
35 eleq1 2825 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ↔ ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ))
36 breq2 5057 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (1 < 𝑃 ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
37 oveq1 7220 . . . . . 6 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 − 1) = (((𝐾 · (2↑𝑁)) + 1) − 1))
3837oveq1d 7228 . . . . 5 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 − 1) / 2) = ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2))
3938eleq1d 2822 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (((𝑃 − 1) / 2) ∈ ℕ ↔ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
4035, 36, 393anbi123d 1438 . . 3 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) ↔ (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)))
4134, 40syl5ibrcom 250 . 2 (𝜑 → (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)))
421, 41mpd 15 1 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cmin 11062   / cdiv 11489  cn 11830  2c2 11885  cz 12176  cexp 13635  cdvds 15815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-seq 13575  df-exp 13636  df-dvds 15816
This theorem is referenced by:  proththd  44739
  Copyright terms: Public domain W3C validator