Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththdlem Structured version   Visualization version   GIF version

Theorem proththdlem 45483
Description: Lemma for proththd 45484. (Contributed by AV, 4-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
Assertion
Ref Expression
proththdlem (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))

Proof of Theorem proththdlem
StepHypRef Expression
1 proththd.p . 2 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
2 proththd.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
3 2nn 12148 . . . . . . . 8 2 ∈ ℕ
43a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ)
5 proththd.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12395 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
74, 6nnexpcld 14062 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℕ)
82, 7nnmulcld 12128 . . . . 5 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℕ)
98peano2nnd 12092 . . . 4 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ)
10 1m1e0 12147 . . . . . 6 (1 − 1) = 0
118nngt0d 12124 . . . . . 6 (𝜑 → 0 < (𝐾 · (2↑𝑁)))
1210, 11eqbrtrid 5128 . . . . 5 (𝜑 → (1 − 1) < (𝐾 · (2↑𝑁)))
13 1red 11078 . . . . . 6 (𝜑 → 1 ∈ ℝ)
148nnred 12090 . . . . . 6 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℝ)
1513, 13, 14ltsubaddd 11673 . . . . 5 (𝜑 → ((1 − 1) < (𝐾 · (2↑𝑁)) ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
1612, 15mpbid 231 . . . 4 (𝜑 → 1 < ((𝐾 · (2↑𝑁)) + 1))
178nncnd 12091 . . . . . . 7 (𝜑 → (𝐾 · (2↑𝑁)) ∈ ℂ)
18 pncan1 11501 . . . . . . 7 ((𝐾 · (2↑𝑁)) ∈ ℂ → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
1917, 18syl 17 . . . . . 6 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) − 1) = (𝐾 · (2↑𝑁)))
2019oveq1d 7353 . . . . 5 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) = ((𝐾 · (2↑𝑁)) / 2))
21 2z 12454 . . . . . . . . 9 2 ∈ ℤ
2221a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
232nnzd 12527 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
247nnzd 12527 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℤ)
2522, 23, 243jca 1127 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ))
26 iddvdsexp 16089 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑁))
2722, 5, 26syl2anc 584 . . . . . . 7 (𝜑 → 2 ∥ (2↑𝑁))
28 dvdsmultr2 16107 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2 ∥ (2↑𝑁) → 2 ∥ (𝐾 · (2↑𝑁))))
2925, 27, 28sylc 65 . . . . . 6 (𝜑 → 2 ∥ (𝐾 · (2↑𝑁)))
30 nndivdvds 16072 . . . . . . 7 (((𝐾 · (2↑𝑁)) ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
318, 4, 30syl2anc 584 . . . . . 6 (𝜑 → (2 ∥ (𝐾 · (2↑𝑁)) ↔ ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ))
3229, 31mpbid 231 . . . . 5 (𝜑 → ((𝐾 · (2↑𝑁)) / 2) ∈ ℕ)
3320, 32eqeltrd 2837 . . . 4 (𝜑 → ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)
349, 16, 333jca 1127 . . 3 (𝜑 → (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
35 eleq1 2824 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ↔ ((𝐾 · (2↑𝑁)) + 1) ∈ ℕ))
36 breq2 5097 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (1 < 𝑃 ↔ 1 < ((𝐾 · (2↑𝑁)) + 1)))
37 oveq1 7345 . . . . . 6 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 − 1) = (((𝐾 · (2↑𝑁)) + 1) − 1))
3837oveq1d 7353 . . . . 5 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 − 1) / 2) = ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2))
3938eleq1d 2821 . . . 4 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (((𝑃 − 1) / 2) ∈ ℕ ↔ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ))
4035, 36, 393anbi123d 1435 . . 3 (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) ↔ (((𝐾 · (2↑𝑁)) + 1) ∈ ℕ ∧ 1 < ((𝐾 · (2↑𝑁)) + 1) ∧ ((((𝐾 · (2↑𝑁)) + 1) − 1) / 2) ∈ ℕ)))
4134, 40syl5ibrcom 246 . 2 (𝜑 → (𝑃 = ((𝐾 · (2↑𝑁)) + 1) → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)))
421, 41mpd 15 1 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5093  (class class class)co 7338  cc 10971  0cc0 10973  1c1 10974   + caddc 10976   · cmul 10978   < clt 11111  cmin 11307   / cdiv 11734  cn 12075  2c2 12130  cz 12421  cexp 13884  cdvds 16063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-div 11735  df-nn 12076  df-2 12138  df-n0 12336  df-z 12422  df-uz 12685  df-seq 13824  df-exp 13885  df-dvds 16064
This theorem is referenced by:  proththd  45484
  Copyright terms: Public domain W3C validator