![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m1expo | Structured version Visualization version GIF version |
Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.) |
Ref | Expression |
---|---|
m1expo | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odd2np1 16279 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
2 | oveq2 7411 | . . . . . 6 ⊢ (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) | |
3 | 2 | eqcoms 2741 | . . . . 5 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) |
4 | neg1cn 12321 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
5 | 4 | a1i 11 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → -1 ∈ ℂ) |
6 | neg1ne0 12323 | . . . . . . . . 9 ⊢ -1 ≠ 0 | |
7 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → -1 ≠ 0) |
8 | 2z 12589 | . . . . . . . . . 10 ⊢ 2 ∈ ℤ | |
9 | 8 | a1i 11 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
10 | id 22 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
11 | 9, 10 | zmulcld 12667 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
12 | 5, 7, 11 | expp1zd 14115 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1)) |
13 | m1expeven 14070 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1) | |
14 | 13 | oveq1d 7418 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1)) |
15 | 4 | mullidi 11214 | . . . . . . . 8 ⊢ (1 · -1) = -1 |
16 | 14, 15 | eqtrdi 2789 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1) |
17 | 12, 16 | eqtrd 2773 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1) |
18 | 17 | adantl 483 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (-1↑((2 · 𝑛) + 1)) = -1) |
19 | 3, 18 | sylan9eqr 2795 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1) |
20 | 19 | rexlimdva2 3158 | . . 3 ⊢ (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)) |
21 | 1, 20 | sylbid 239 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1)) |
22 | 21 | imp 408 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 class class class wbr 5146 (class class class)co 7403 ℂcc 11103 0cc0 11105 1c1 11106 + caddc 11108 · cmul 11110 -cneg 11440 2c2 12262 ℤcz 12553 ↑cexp 14022 ∥ cdvds 16192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-div 11867 df-nn 12208 df-2 12270 df-n0 12468 df-z 12554 df-uz 12818 df-seq 13962 df-exp 14023 df-dvds 16193 |
This theorem is referenced by: 2lgsoddprm 26898 negexpidd 41352 |
Copyright terms: Public domain | W3C validator |