| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negmod | Structured version Visualization version GIF version | ||
| Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| negmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn 12903 | . . . . 5 ⊢ (𝑁 ∈ ℝ+ → 𝑁 ∈ ℂ) | |
| 2 | recn 11103 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | negsub 11416 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 + -𝐴) = (𝑁 − 𝐴)) | |
| 4 | 1, 2, 3 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑁 + -𝐴) = (𝑁 − 𝐴)) |
| 5 | 4 | eqcomd 2739 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑁 − 𝐴) = (𝑁 + -𝐴)) |
| 6 | 5 | oveq1d 7367 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑁 − 𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁)) |
| 7 | 1 | mullidd 11137 | . . . . 5 ⊢ (𝑁 ∈ ℝ+ → (1 · 𝑁) = 𝑁) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (1 · 𝑁) = 𝑁) |
| 9 | 8 | oveq1d 7367 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((1 · 𝑁) + -𝐴) = (𝑁 + -𝐴)) |
| 10 | 9 | oveq1d 7367 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁)) |
| 11 | 1cnd 11114 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 1 ∈ ℂ) | |
| 12 | mulcl 11097 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 · 𝑁) ∈ ℂ) | |
| 13 | 11, 1, 12 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (1 · 𝑁) ∈ ℂ) |
| 14 | renegcl 11431 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 15 | 14 | recnd 11147 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℂ) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → -𝐴 ∈ ℂ) |
| 17 | 13, 16 | addcomd 11322 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((1 · 𝑁) + -𝐴) = (-𝐴 + (1 · 𝑁))) |
| 18 | 17 | oveq1d 7367 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((-𝐴 + (1 · 𝑁)) mod 𝑁)) |
| 19 | 14 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → -𝐴 ∈ ℝ) |
| 20 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 𝑁 ∈ ℝ+) | |
| 21 | 1zzd 12509 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 1 ∈ ℤ) | |
| 22 | modcyc 13812 | . . . 4 ⊢ ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁)) | |
| 23 | 19, 20, 21, 22 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁)) |
| 24 | 18, 23 | eqtrd 2768 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = (-𝐴 mod 𝑁)) |
| 25 | 6, 10, 24 | 3eqtr2rd 2775 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 ℝcr 11012 1c1 11014 + caddc 11016 · cmul 11018 − cmin 11351 -cneg 11352 ℤcz 12475 ℝ+crp 12892 mod cmo 13775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fl 13698 df-mod 13776 |
| This theorem is referenced by: m1modnnsub1 13826 gausslemma2dlem5a 27309 ceildivmod 47464 submodlt 47475 |
| Copyright terms: Public domain | W3C validator |