| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iftrue 4530 | . . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) = (𝐹‘𝑦)) | 
| 2 | 1 | mpteq2ia 5244 | . . . . . . 7
⊢ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) | 
| 3 |  | mbfi1flim.2 | . . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | 
| 4 | 3 | feqmptd 6976 | . . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) | 
| 5 |  | mbfi1flim.1 | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ MblFn) | 
| 6 | 4, 5 | eqeltrrd 2841 | . . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∈ MblFn) | 
| 7 | 2, 6 | eqeltrid 2844 | . . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) ∈ MblFn) | 
| 8 |  | fvex 6918 | . . . . . . . 8
⊢ (𝐹‘𝑦) ∈ V | 
| 9 |  | c0ex 11256 | . . . . . . . 8
⊢ 0 ∈
V | 
| 10 | 8, 9 | ifex 4575 | . . . . . . 7
⊢ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) ∈ V | 
| 11 | 10 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) ∈ V) | 
| 12 | 7, 11 | mbfdm2 25673 | . . . . 5
⊢ (𝜑 → 𝐴 ∈ dom vol) | 
| 13 |  | mblss 25567 | . . . . 5
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) | 
| 14 | 12, 13 | syl 17 | . . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 15 |  | rembl 25576 | . . . . 5
⊢ ℝ
∈ dom vol | 
| 16 | 15 | a1i 11 | . . . 4
⊢ (𝜑 → ℝ ∈ dom
vol) | 
| 17 |  | eldifn 4131 | . . . . . 6
⊢ (𝑦 ∈ (ℝ ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) | 
| 18 | 17 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑦 ∈ 𝐴) | 
| 19 | 18 | iffalsed 4535 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) = 0) | 
| 20 | 14, 16, 11, 19, 7 | mbfss 25682 | . . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) ∈ MblFn) | 
| 21 | 3 | ffvelcdmda 7103 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) | 
| 22 |  | 0red 11265 | . . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑦 ∈ 𝐴) → 0 ∈ ℝ) | 
| 23 | 21, 22 | ifclda 4560 | . . . . 5
⊢ (𝜑 → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) ∈ ℝ) | 
| 24 | 23 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) ∈ ℝ) | 
| 25 | 24 | fmpttd 7134 | . . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦),
0)):ℝ⟶ℝ) | 
| 26 | 20, 25 | mbfi1flimlem 25758 | . 2
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥))) | 
| 27 |  | ssralv 4051 | . . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) → ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥))) | 
| 28 | 14, 27 | syl 17 | . . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) → ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥))) | 
| 29 | 14 | sselda 3982 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | 
| 30 |  | eleq1w 2823 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | 
| 31 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | 
| 32 | 30, 31 | ifbieq1d 4549 | . . . . . . . . . 10
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) = if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) | 
| 33 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) | 
| 34 |  | fvex 6918 | . . . . . . . . . . 11
⊢ (𝐹‘𝑥) ∈ V | 
| 35 | 34, 9 | ifex 4575 | . . . . . . . . . 10
⊢ if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0) ∈ V | 
| 36 | 32, 33, 35 | fvmpt 7015 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) = if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) | 
| 37 | 29, 36 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) = if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) | 
| 38 |  | iftrue 4530 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) | 
| 39 | 38 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) | 
| 40 | 37, 39 | eqtrd 2776 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) = (𝐹‘𝑥)) | 
| 41 | 40 | breq2d 5154 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | 
| 42 | 41 | ralbidva 3175 | . . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | 
| 43 | 28, 42 | sylibd 239 | . . . 4
⊢ (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) → ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | 
| 44 | 43 | anim2d 612 | . . 3
⊢ (𝜑 → ((𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥)) → (𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) | 
| 45 | 44 | eximdv 1916 | . 2
⊢ (𝜑 → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) | 
| 46 | 26, 45 | mpd 15 | 1
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |