| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 4511 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) = (𝐹‘𝑦)) |
| 2 | 1 | mpteq2ia 5221 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) |
| 3 | | mbfi1flim.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| 4 | 3 | feqmptd 6952 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
| 5 | | mbfi1flim.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 6 | 4, 5 | eqeltrrd 2836 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∈ MblFn) |
| 7 | 2, 6 | eqeltrid 2839 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) ∈ MblFn) |
| 8 | | fvex 6894 |
. . . . . . . 8
⊢ (𝐹‘𝑦) ∈ V |
| 9 | | c0ex 11234 |
. . . . . . . 8
⊢ 0 ∈
V |
| 10 | 8, 9 | ifex 4556 |
. . . . . . 7
⊢ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) ∈ V |
| 11 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) ∈ V) |
| 12 | 7, 11 | mbfdm2 25595 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 13 | | mblss 25489 |
. . . . 5
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
| 14 | 12, 13 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 15 | | rembl 25498 |
. . . . 5
⊢ ℝ
∈ dom vol |
| 16 | 15 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ∈ dom
vol) |
| 17 | | eldifn 4112 |
. . . . . 6
⊢ (𝑦 ∈ (ℝ ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) |
| 18 | 17 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑦 ∈ 𝐴) |
| 19 | 18 | iffalsed 4516 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) = 0) |
| 20 | 14, 16, 11, 19, 7 | mbfss 25604 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) ∈ MblFn) |
| 21 | 3 | ffvelcdmda 7079 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 22 | | 0red 11243 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑦 ∈ 𝐴) → 0 ∈ ℝ) |
| 23 | 21, 22 | ifclda 4541 |
. . . . 5
⊢ (𝜑 → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) ∈ ℝ) |
| 24 | 23 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) ∈ ℝ) |
| 25 | 24 | fmpttd 7110 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦),
0)):ℝ⟶ℝ) |
| 26 | 20, 25 | mbfi1flimlem 25680 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥))) |
| 27 | | ssralv 4032 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) → ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥))) |
| 28 | 14, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) → ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥))) |
| 29 | 14 | sselda 3963 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 30 | | eleq1w 2818 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 31 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 32 | 30, 31 | ifbieq1d 4530 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0) = if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) |
| 33 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0)) |
| 34 | | fvex 6894 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑥) ∈ V |
| 35 | 34, 9 | ifex 4556 |
. . . . . . . . . 10
⊢ if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0) ∈ V |
| 36 | 32, 33, 35 | fvmpt 6991 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) = if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) |
| 37 | 29, 36 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) = if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) |
| 38 | | iftrue 4511 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
| 39 | 38 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
| 40 | 37, 39 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) = (𝐹‘𝑥)) |
| 41 | 40 | breq2d 5136 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 42 | 41 | ralbidva 3162 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 43 | 28, 42 | sylibd 239 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥) → ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 44 | 43 | anim2d 612 |
. . 3
⊢ (𝜑 → ((𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥)) → (𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
| 45 | 44 | eximdv 1917 |
. 2
⊢ (𝜑 → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝐴, (𝐹‘𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
| 46 | 26, 45 | mpd 15 |
1
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |