Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mcgcnv Structured version   Visualization version   GIF version

Theorem mcgcnv 30700
Description: The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mcgcnv.1 𝐻 = (𝑉MGalConn𝑊)
mcgcnv.2 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉))
Assertion
Ref Expression
mcgcnv ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺𝐺𝑀𝐹))

Proof of Theorem mcgcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ancom 464 . . . 4 ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)))
21a1i 11 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊))))
3 ralcom 3345 . . . 4 (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)))
4 bicom 225 . . . . . . 7 (((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐹𝑥)(le‘𝑊)𝑦))
5 fvex 6676 . . . . . . . . . . 11 (𝐺𝑦) ∈ V
6 vex 3483 . . . . . . . . . . 11 𝑥 ∈ V
75, 6brcnv 5741 . . . . . . . . . 10 ((𝐺𝑦)(le‘𝑉)𝑥𝑥(le‘𝑉)(𝐺𝑦))
87bicomi 227 . . . . . . . . 9 (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐺𝑦)(le‘𝑉)𝑥)
98a1i 11 . . . . . . . 8 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐺𝑦)(le‘𝑉)𝑥))
10 vex 3483 . . . . . . . . . . 11 𝑦 ∈ V
11 fvex 6676 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
1210, 11brcnv 5741 . . . . . . . . . 10 (𝑦(le‘𝑊)(𝐹𝑥) ↔ (𝐹𝑥)(le‘𝑊)𝑦)
1312bicomi 227 . . . . . . . . 9 ((𝐹𝑥)(le‘𝑊)𝑦𝑦(le‘𝑊)(𝐹𝑥))
1413a1i 11 . . . . . . . 8 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝐹𝑥)(le‘𝑊)𝑦𝑦(le‘𝑊)(𝐹𝑥)))
159, 14bibi12d 349 . . . . . . 7 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → ((𝑥(le‘𝑉)(𝐺𝑦) ↔ (𝐹𝑥)(le‘𝑊)𝑦) ↔ ((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
164, 15syl5bb 286 . . . . . 6 ((((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑉)) → (((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
1716ralbidva 3191 . . . . 5 (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ (Base‘𝑊)) → (∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
1817ralbidva 3191 . . . 4 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
193, 18syl5bb 286 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥))))
202, 19anbi12d 633 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦))) ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥)))))
21 eqid 2824 . . 3 (Base‘𝑉) = (Base‘𝑉)
22 eqid 2824 . . 3 (Base‘𝑊) = (Base‘𝑊)
23 eqid 2824 . . 3 (le‘𝑉) = (le‘𝑉)
24 eqid 2824 . . 3 (le‘𝑊) = (le‘𝑊)
25 mcgcnv.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
26 simpl 486 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑉 ∈ Proset )
27 simpr 488 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑊 ∈ Proset )
2821, 22, 23, 24, 25, 26, 27mgcval 30690 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑊)((𝐹𝑥)(le‘𝑊)𝑦𝑥(le‘𝑉)(𝐺𝑦)))))
29 eqid 2824 . . . 4 (ODual‘𝑊) = (ODual‘𝑊)
3029, 22odubas 17745 . . 3 (Base‘𝑊) = (Base‘(ODual‘𝑊))
31 eqid 2824 . . . 4 (ODual‘𝑉) = (ODual‘𝑉)
3231, 21odubas 17745 . . 3 (Base‘𝑉) = (Base‘(ODual‘𝑉))
3329, 24oduleval 17743 . . 3 (le‘𝑊) = (le‘(ODual‘𝑊))
3431, 23oduleval 17743 . . 3 (le‘𝑉) = (le‘(ODual‘𝑉))
35 mcgcnv.2 . . 3 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉))
3629oduprs 30664 . . . 4 (𝑊 ∈ Proset → (ODual‘𝑊) ∈ Proset )
3727, 36syl 17 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (ODual‘𝑊) ∈ Proset )
3831oduprs 30664 . . . 4 (𝑉 ∈ Proset → (ODual‘𝑉) ∈ Proset )
3926, 38syl 17 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (ODual‘𝑉) ∈ Proset )
4030, 32, 33, 34, 35, 37, 39mgcval 30690 . 2 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐺𝑀𝐹 ↔ ((𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)∀𝑥 ∈ (Base‘𝑉)((𝐺𝑦)(le‘𝑉)𝑥𝑦(le‘𝑊)(𝐹𝑥)))))
4120, 28, 403bitr4d 314 1 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺𝐺𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133   class class class wbr 5053  ccnv 5542  wf 6341  cfv 6345  (class class class)co 7151  Basecbs 16485  lecple 16574   Proset cproset 17538  ODualcodu 17740  MGalConncmgc 30682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-map 8406  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-dec 12098  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ple 16587  df-proset 17540  df-odu 17741  df-mgc 30684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator