![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metequiv | Structured version Visualization version GIF version |
Description: Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
metequiv.3 | β’ π½ = (MetOpenβπΆ) |
metequiv.4 | β’ πΎ = (MetOpenβπ·) |
Ref | Expression |
---|---|
metequiv | β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ = πΎ β βπ₯ β π (βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ βπ β β+ (π₯(ballβπΆ)π) β (π₯(ballβπ·)π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metequiv.3 | . . . 4 β’ π½ = (MetOpenβπΆ) | |
2 | metequiv.4 | . . . 4 β’ πΎ = (MetOpenβπ·) | |
3 | 1, 2 | metss 24238 | . . 3 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ β πΎ β βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
4 | 2, 1 | metss 24238 | . . . 4 β’ ((π· β (βMetβπ) β§ πΆ β (βMetβπ)) β (πΎ β π½ β βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπΆ)π) β (π₯(ballβπ·)π))) |
5 | 4 | ancoms 458 | . . 3 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (πΎ β π½ β βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπΆ)π) β (π₯(ballβπ·)π))) |
6 | 3, 5 | anbi12d 630 | . 2 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β ((π½ β πΎ β§ πΎ β π½) β (βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπΆ)π) β (π₯(ballβπ·)π)))) |
7 | eqss 3997 | . 2 β’ (π½ = πΎ β (π½ β πΎ β§ πΎ β π½)) | |
8 | r19.26 3110 | . 2 β’ (βπ₯ β π (βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ βπ β β+ (π₯(ballβπΆ)π) β (π₯(ballβπ·)π)) β (βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπΆ)π) β (π₯(ballβπ·)π))) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ = πΎ β βπ₯ β π (βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ βπ β β+ (π₯(ballβπΆ)π) β (π₯(ballβπ·)π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 βwrex 3069 β wss 3948 βcfv 6543 (class class class)co 7412 β+crp 12979 βMetcxmet 21130 ballcbl 21132 MetOpencmopn 21135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-bl 21140 df-mopn 21141 df-bases 22670 |
This theorem is referenced by: metequiv2 24240 |
Copyright terms: Public domain | W3C validator |