MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddabs Structured version   Visualization version   GIF version

Theorem modaddabs 13821
Description: Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
modaddabs ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))

Proof of Theorem modaddabs
StepHypRef Expression
1 modcl 13783 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℝ)
21recnd 11146 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℂ)
323adant2 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℂ)
4 modcl 13783 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℝ)
54recnd 11146 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℂ)
653adant1 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℂ)
73, 6addcomd 11321 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) = ((𝐵 mod 𝐶) + (𝐴 mod 𝐶)))
87oveq1d 7367 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶))
9 simpl 482 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
104, 9jca 511 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ))
11103adant1 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ))
12 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
131, 12jca 511 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ+))
14133adant2 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ+))
15 modabs2 13815 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶))
16153adant1 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶))
17 modadd1 13818 . . . 4 ((((𝐵 mod 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶)) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶))
1811, 14, 16, 17syl3anc 1373 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶))
19 recn 11102 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
20193ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
213, 20addcomd 11321 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) + 𝐵) = (𝐵 + (𝐴 mod 𝐶)))
2221oveq1d 7367 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶))
2318, 22eqtr4d 2769 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = (((𝐴 mod 𝐶) + 𝐵) mod 𝐶))
24 simpl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
251, 24jca 511 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ))
26253adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ))
27 3simpc 1150 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+))
28 modabs2 13815 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶))
29283adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶))
30 modadd1 13818 . . 3 ((((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶)) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
3126, 27, 29, 30syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
328, 23, 313eqtrd 2770 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  (class class class)co 7352  cc 11010  cr 11011   + caddc 11015  +crp 12896   mod cmo 13779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9332  df-inf 9333  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-rp 12897  df-fl 13702  df-mod 13780
This theorem is referenced by:  modfsummods  15706  numclwwlk5  30375  numclwwlk7  30378  fouriersw  46334  m1mod0mod1  47459  gpg3nbgrvtx0  48181
  Copyright terms: Public domain W3C validator