MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddabs Structured version   Visualization version   GIF version

Theorem modaddabs 13915
Description: Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
modaddabs ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))

Proof of Theorem modaddabs
StepHypRef Expression
1 modcl 13879 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℝ)
21recnd 11255 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℂ)
323adant2 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℂ)
4 modcl 13879 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℝ)
54recnd 11255 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℂ)
653adant1 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℂ)
73, 6addcomd 11429 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) = ((𝐵 mod 𝐶) + (𝐴 mod 𝐶)))
87oveq1d 7414 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶))
9 simpl 482 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
104, 9jca 511 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ))
11103adant1 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ))
12 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
131, 12jca 511 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ+))
14133adant2 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ+))
15 modabs2 13911 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶))
16153adant1 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶))
17 modadd1 13914 . . . 4 ((((𝐵 mod 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶)) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶))
1811, 14, 16, 17syl3anc 1372 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶))
19 recn 11211 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
20193ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
213, 20addcomd 11429 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) + 𝐵) = (𝐵 + (𝐴 mod 𝐶)))
2221oveq1d 7414 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶))
2318, 22eqtr4d 2772 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = (((𝐴 mod 𝐶) + 𝐵) mod 𝐶))
24 simpl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
251, 24jca 511 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ))
26253adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ))
27 3simpc 1150 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+))
28 modabs2 13911 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶))
29283adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶))
30 modadd1 13914 . . 3 ((((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶)) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
3126, 27, 29, 30syl3anc 1372 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
328, 23, 313eqtrd 2773 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  (class class class)co 7399  cc 11119  cr 11120   + caddc 11124  +crp 13000   mod cmo 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9448  df-inf 9449  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-fl 13798  df-mod 13876
This theorem is referenced by:  modfsummods  15796  numclwwlk5  30301  numclwwlk7  30304  fouriersw  46190  m1mod0mod1  47301  gpg3nbgrvtx0  47977
  Copyright terms: Public domain W3C validator