MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddabs Structured version   Visualization version   GIF version

Theorem modaddabs 13946
Description: Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
modaddabs ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))

Proof of Theorem modaddabs
StepHypRef Expression
1 modcl 13910 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℝ)
21recnd 11287 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℂ)
323adant2 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℂ)
4 modcl 13910 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℝ)
54recnd 11287 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℂ)
653adant1 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℂ)
73, 6addcomd 11461 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) = ((𝐵 mod 𝐶) + (𝐴 mod 𝐶)))
87oveq1d 7446 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶))
9 simpl 482 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
104, 9jca 511 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ))
11103adant1 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ))
12 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
131, 12jca 511 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ+))
14133adant2 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ+))
15 modabs2 13942 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶))
16153adant1 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶))
17 modadd1 13945 . . . 4 ((((𝐵 mod 𝐶) ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶)) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶))
1811, 14, 16, 17syl3anc 1370 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶))
19 recn 11243 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
20193ad2ant2 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
213, 20addcomd 11461 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) + 𝐵) = (𝐵 + (𝐴 mod 𝐶)))
2221oveq1d 7446 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶))
2318, 22eqtr4d 2778 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = (((𝐴 mod 𝐶) + 𝐵) mod 𝐶))
24 simpl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
251, 24jca 511 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ))
26253adant2 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ))
27 3simpc 1149 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+))
28 modabs2 13942 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶))
29283adant2 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶))
30 modadd1 13945 . . 3 ((((𝐴 mod 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶)) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
3126, 27, 29, 30syl3anc 1370 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
328, 23, 313eqtrd 2779 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  cr 11152   + caddc 11156  +crp 13032   mod cmo 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907
This theorem is referenced by:  modfsummods  15826  numclwwlk5  30417  numclwwlk7  30420  fouriersw  46187  m1mod0mod1  47294  gpg3nbgrvtx0  47967
  Copyright terms: Public domain W3C validator