Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0eo Structured version   Visualization version   GIF version

Theorem nn0eo 48262
Description: A nonnegative integer is even or odd. (Contributed by AV, 27-May-2020.)
Assertion
Ref Expression
nn0eo (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))

Proof of Theorem nn0eo
StepHypRef Expression
1 nn0z 12664 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 zeo 12729 . . 3 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
4 simpr 484 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℤ)
5 nn0re 12562 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
6 nn0ge0 12578 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
7 2re 12367 . . . . . . . 8 2 ∈ ℝ
87a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
9 2pos 12396 . . . . . . . 8 0 < 2
109a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 < 2)
11 divge0 12164 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝑁 / 2))
125, 6, 8, 10, 11syl22anc 838 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 / 2))
1312adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → 0 ≤ (𝑁 / 2))
14 elnn0z 12652 . . . . 5 ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℤ ∧ 0 ≤ (𝑁 / 2)))
154, 13, 14sylanbrc 582 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℕ0)
1615ex 412 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℤ → (𝑁 / 2) ∈ ℕ0))
17 simpr 484 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℤ)
18 peano2nn0 12593 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1918nn0red 12614 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
20 1red 11291 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
21 0le1 11813 . . . . . . . . 9 0 ≤ 1
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 1)
235, 20, 6, 22addge0d 11866 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
24 divge0 12164 . . . . . . 7 ((((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑁 + 1) / 2))
2519, 23, 8, 10, 24syl22anc 838 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2))
2625adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 0 ≤ ((𝑁 + 1) / 2))
27 elnn0z 12652 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2)))
2817, 26, 27sylanbrc 582 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0)
2928ex 412 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0))
3016, 29orim12d 965 . 2 (𝑁 ∈ ℕ0 → (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0)))
313, 30mpd 15 1 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  0cn0 12553  cz 12639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640
This theorem is referenced by:  flnn0div2ge  48267  dignn0flhalf  48352
  Copyright terms: Public domain W3C validator