Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0eo Structured version   Visualization version   GIF version

Theorem nn0eo 44608
Description: A nonnegative integer is even or odd. (Contributed by AV, 27-May-2020.)
Assertion
Ref Expression
nn0eo (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))

Proof of Theorem nn0eo
StepHypRef Expression
1 nn0z 12006 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 zeo 12069 . . 3 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
4 simpr 487 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℤ)
5 nn0re 11907 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
6 nn0ge0 11923 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
7 2re 11712 . . . . . . . 8 2 ∈ ℝ
87a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
9 2pos 11741 . . . . . . . 8 0 < 2
109a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 < 2)
11 divge0 11509 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝑁 / 2))
125, 6, 8, 10, 11syl22anc 836 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 / 2))
1312adantr 483 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → 0 ≤ (𝑁 / 2))
14 elnn0z 11995 . . . . 5 ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℤ ∧ 0 ≤ (𝑁 / 2)))
154, 13, 14sylanbrc 585 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℕ0)
1615ex 415 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℤ → (𝑁 / 2) ∈ ℕ0))
17 simpr 487 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℤ)
18 peano2nn0 11938 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1918nn0red 11957 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
20 1red 10642 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
21 0le1 11163 . . . . . . . . 9 0 ≤ 1
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 1)
235, 20, 6, 22addge0d 11216 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
24 divge0 11509 . . . . . . 7 ((((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑁 + 1) / 2))
2519, 23, 8, 10, 24syl22anc 836 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2))
2625adantr 483 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 0 ≤ ((𝑁 + 1) / 2))
27 elnn0z 11995 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2)))
2817, 26, 27sylanbrc 585 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0)
2928ex 415 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0))
3016, 29orim12d 961 . 2 (𝑁 ∈ ℕ0 → (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0)))
313, 30mpd 15 1 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  wcel 2114   class class class wbr 5066  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676   / cdiv 11297  2c2 11693  0cn0 11898  cz 11982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983
This theorem is referenced by:  flnn0div2ge  44613  dignn0flhalf  44698
  Copyright terms: Public domain W3C validator