![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0eo | Structured version Visualization version GIF version |
Description: A nonnegative integer is even or odd. (Contributed by AV, 27-May-2020.) |
Ref | Expression |
---|---|
nn0eo | ⊢ (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 11815 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
2 | zeo 11878 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) |
4 | simpr 477 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℤ) | |
5 | nn0re 11714 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
6 | nn0ge0 11731 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
7 | 2re 11511 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
9 | 2pos 11547 | . . . . . . . 8 ⊢ 0 < 2 | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 < 2) |
11 | divge0 11306 | . . . . . . 7 ⊢ (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝑁 / 2)) | |
12 | 5, 6, 8, 10, 11 | syl22anc 826 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 / 2)) |
13 | 12 | adantr 473 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → 0 ≤ (𝑁 / 2)) |
14 | elnn0z 11803 | . . . . 5 ⊢ ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℤ ∧ 0 ≤ (𝑁 / 2))) | |
15 | 4, 13, 14 | sylanbrc 575 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℕ0) |
16 | 15 | ex 405 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℤ → (𝑁 / 2) ∈ ℕ0)) |
17 | simpr 477 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℤ) | |
18 | peano2nn0 11746 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
19 | 18 | nn0red 11765 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ) |
20 | 1red 10436 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
21 | 0le1 10960 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 1) |
23 | 5, 20, 6, 22 | addge0d 11013 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1)) |
24 | divge0 11306 | . . . . . . 7 ⊢ ((((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑁 + 1) / 2)) | |
25 | 19, 23, 8, 10, 24 | syl22anc 826 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2)) |
26 | 25 | adantr 473 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 0 ≤ ((𝑁 + 1) / 2)) |
27 | elnn0z 11803 | . . . . 5 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2))) | |
28 | 17, 26, 27 | sylanbrc 575 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0) |
29 | 28 | ex 405 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0)) |
30 | 16, 29 | orim12d 947 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))) |
31 | 3, 30 | mpd 15 | 1 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∨ wo 833 ∈ wcel 2048 class class class wbr 4927 (class class class)co 6974 ℝcr 10330 0cc0 10331 1c1 10332 + caddc 10334 < clt 10470 ≤ cle 10471 / cdiv 11094 2c2 11492 ℕ0cn0 11704 ℤcz 11790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-resscn 10388 ax-1cn 10389 ax-icn 10390 ax-addcl 10391 ax-addrcl 10392 ax-mulcl 10393 ax-mulrcl 10394 ax-mulcom 10395 ax-addass 10396 ax-mulass 10397 ax-distr 10398 ax-i2m1 10399 ax-1ne0 10400 ax-1rid 10401 ax-rnegex 10402 ax-rrecex 10403 ax-cnre 10404 ax-pre-lttri 10405 ax-pre-lttrn 10406 ax-pre-ltadd 10407 ax-pre-mulgt0 10408 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-nel 3071 df-ral 3090 df-rex 3091 df-reu 3092 df-rmo 3093 df-rab 3094 df-v 3414 df-sbc 3681 df-csb 3786 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-pss 3844 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-tp 4444 df-op 4446 df-uni 4711 df-iun 4792 df-br 4928 df-opab 4990 df-mpt 5007 df-tr 5029 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-wrecs 7747 df-recs 7809 df-rdg 7847 df-er 8085 df-en 8303 df-dom 8304 df-sdom 8305 df-pnf 10472 df-mnf 10473 df-xr 10474 df-ltxr 10475 df-le 10476 df-sub 10668 df-neg 10669 df-div 11095 df-nn 11436 df-2 11500 df-n0 11705 df-z 11791 |
This theorem is referenced by: flnn0div2ge 43935 dignn0flhalf 44020 |
Copyright terms: Public domain | W3C validator |