Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0eo Structured version   Visualization version   GIF version

Theorem nn0eo 48517
Description: A nonnegative integer is even or odd. (Contributed by AV, 27-May-2020.)
Assertion
Ref Expression
nn0eo (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))

Proof of Theorem nn0eo
StepHypRef Expression
1 nn0z 12496 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 zeo 12562 . . 3 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
4 simpr 484 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℤ)
5 nn0re 12393 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
6 nn0ge0 12409 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
7 2re 12202 . . . . . . . 8 2 ∈ ℝ
87a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
9 2pos 12231 . . . . . . . 8 0 < 2
109a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 < 2)
11 divge0 11994 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝑁 / 2))
125, 6, 8, 10, 11syl22anc 838 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 / 2))
1312adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → 0 ≤ (𝑁 / 2))
14 elnn0z 12484 . . . . 5 ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℤ ∧ 0 ≤ (𝑁 / 2)))
154, 13, 14sylanbrc 583 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℕ0)
1615ex 412 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℤ → (𝑁 / 2) ∈ ℕ0))
17 simpr 484 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℤ)
18 peano2nn0 12424 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1918nn0red 12446 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
20 1red 11116 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
21 0le1 11643 . . . . . . . . 9 0 ≤ 1
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 1)
235, 20, 6, 22addge0d 11696 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
24 divge0 11994 . . . . . . 7 ((((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑁 + 1) / 2))
2519, 23, 8, 10, 24syl22anc 838 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2))
2625adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 0 ≤ ((𝑁 + 1) / 2))
27 elnn0z 12484 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2)))
2817, 26, 27sylanbrc 583 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0)
2928ex 412 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0))
3016, 29orim12d 966 . 2 (𝑁 ∈ ℕ0 → (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0)))
313, 30mpd 15 1 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2109   class class class wbr 5092  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150   / cdiv 11777  2c2 12183  0cn0 12384  cz 12471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472
This theorem is referenced by:  flnn0div2ge  48522  dignn0flhalf  48607
  Copyright terms: Public domain W3C validator