Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalf Structured version   Visualization version   GIF version

Theorem dignn0flhalf 45852
Description: The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010.)
Assertion
Ref Expression
dignn0flhalf ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))

Proof of Theorem dignn0flhalf
StepHypRef Expression
1 eluzge2nn0 12556 . . . 4 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
2 nn0eo 45762 . . . 4 (𝐴 ∈ ℕ0 → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
31, 2syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
4 dignn0ehalf 45851 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
51, 4syl3an2 1162 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
6 eluzelz 12521 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
7 nn0z 12273 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ ℤ)
8 zefldiv2 45764 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
96, 7, 8syl2anr 596 . . . . . . . . 9 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
109eqcomd 2744 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
11103adant3 1130 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
1211oveq2d 7271 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
135, 12eqtrd 2778 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
14133exp 1117 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
1563ad2ant2 1132 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ ℤ)
16 simp2 1135 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
17 simp1 1134 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 + 1) / 2) ∈ ℕ0)
18 nno 16019 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝐴 + 1) / 2) ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
1916, 17, 18syl2anc 583 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
20 simp3 1136 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
21 dignn0flhalflem2 45850 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2215, 19, 20, 21syl3anc 1369 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2322oveq1d 7270 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
24 2nn 11976 . . . . . . . 8 2 ∈ ℕ
2524a1i 11 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℕ)
26 peano2nn0 12203 . . . . . . . 8 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
27263ad2ant3 1133 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
28 nn0rp0 13116 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
291, 28syl 17 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ (0[,)+∞))
30293ad2ant2 1132 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
31 nn0digval 45834 . . . . . . 7 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3225, 27, 30, 31syl3anc 1369 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
33 eluzelre 12522 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3433rehalfcld 12150 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 / 2) ∈ ℝ)
351nn0ge0d 12226 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
36 2re 11977 . . . . . . . . . . . . 13 2 ∈ ℝ
37 2pos 12006 . . . . . . . . . . . . 13 0 < 2
3836, 37pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
3938a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
40 divge0 11774 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝐴 / 2))
4133, 35, 39, 40syl21anc 834 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 / 2))
42 flge0nn0 13468 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℝ ∧ 0 ≤ (𝐴 / 2)) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
4334, 41, 42syl2anc 583 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
44433ad2ant2 1132 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
45 nn0rp0 13116 . . . . . . . 8 ((⌊‘(𝐴 / 2)) ∈ ℕ0 → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
4644, 45syl 17 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
47 nn0digval 45834 . . . . . . 7 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (⌊‘(𝐴 / 2)) ∈ (0[,)+∞)) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4825, 20, 46, 47syl3anc 1369 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4923, 32, 483eqtr4d 2788 . . . . 5 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
50493exp 1117 . . . 4 (((𝐴 + 1) / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
5114, 50jaoi 853 . . 3 (((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0) → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
523, 51mpcom 38 . 2 (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))))
5352imp 406 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  [,)cico 13010  cfl 13438   mod cmo 13517  cexp 13710  digitcdig 45829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-dig 45830
This theorem is referenced by:  nn0sumshdiglemB  45854
  Copyright terms: Public domain W3C validator