Proof of Theorem dignn0flhalf
Step | Hyp | Ref
| Expression |
1 | | eluzge2nn0 12483 |
. . . 4
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈
ℕ0) |
2 | | nn0eo 45547 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ ((𝐴 / 2) ∈
ℕ0 ∨ ((𝐴 + 1) / 2) ∈
ℕ0)) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝐴 ∈
(ℤ≥‘2) → ((𝐴 / 2) ∈ ℕ0 ∨
((𝐴 + 1) / 2) ∈
ℕ0)) |
4 | | dignn0ehalf 45636 |
. . . . . . 7
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2))) |
5 | 1, 4 | syl3an2 1166 |
. . . . . 6
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
(ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2))) |
6 | | eluzelz 12448 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ ℤ) |
7 | | nn0z 12200 |
. . . . . . . . . 10
⊢ ((𝐴 / 2) ∈ ℕ0
→ (𝐴 / 2) ∈
ℤ) |
8 | | zefldiv2 45549 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) →
(⌊‘(𝐴 / 2)) =
(𝐴 / 2)) |
9 | 6, 7, 8 | syl2anr 600 |
. . . . . . . . 9
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
(ℤ≥‘2)) → (⌊‘(𝐴 / 2)) = (𝐴 / 2)) |
10 | 9 | eqcomd 2743 |
. . . . . . . 8
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
(ℤ≥‘2)) → (𝐴 / 2) = (⌊‘(𝐴 / 2))) |
11 | 10 | 3adant3 1134 |
. . . . . . 7
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
(ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → (𝐴 / 2) = (⌊‘(𝐴 / 2))) |
12 | 11 | oveq2d 7229 |
. . . . . 6
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
(ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))) |
13 | 5, 12 | eqtrd 2777 |
. . . . 5
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
(ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))) |
14 | 13 | 3exp 1121 |
. . . 4
⊢ ((𝐴 / 2) ∈ ℕ0
→ (𝐴 ∈
(ℤ≥‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))))) |
15 | 6 | 3ad2ant2 1136 |
. . . . . . . 8
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈
ℤ) |
16 | | simp2 1139 |
. . . . . . . . 9
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈
(ℤ≥‘2)) |
17 | | simp1 1138 |
. . . . . . . . 9
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 + 1) / 2) ∈
ℕ0) |
18 | | nno 15943 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ ((𝐴 + 1) / 2) ∈ ℕ0)
→ ((𝐴 − 1) / 2)
∈ ℕ) |
19 | 16, 17, 18 | syl2anc 587 |
. . . . . . . 8
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 − 1) / 2) ∈
ℕ) |
20 | | simp3 1140 |
. . . . . . . 8
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈
ℕ0) |
21 | | dignn0flhalflem2 45635 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝐼 ∈
ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) =
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼)))) |
22 | 15, 19, 20, 21 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) →
(⌊‘(𝐴 /
(2↑(𝐼 + 1)))) =
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼)))) |
23 | 22 | oveq1d 7228 |
. . . . . 6
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) →
((⌊‘(𝐴 /
(2↑(𝐼 + 1)))) mod 2) =
((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2)) |
24 | | 2nn 11903 |
. . . . . . . 8
⊢ 2 ∈
ℕ |
25 | 24 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → 2 ∈
ℕ) |
26 | | peano2nn0 12130 |
. . . . . . . 8
⊢ (𝐼 ∈ ℕ0
→ (𝐼 + 1) ∈
ℕ0) |
27 | 26 | 3ad2ant3 1137 |
. . . . . . 7
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈
ℕ0) |
28 | | nn0rp0 13043 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
(0[,)+∞)) |
29 | 1, 28 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ (0[,)+∞)) |
30 | 29 | 3ad2ant2 1136 |
. . . . . . 7
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈
(0[,)+∞)) |
31 | | nn0digval 45619 |
. . . . . . 7
⊢ ((2
∈ ℕ ∧ (𝐼 +
1) ∈ ℕ0 ∧ 𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2)) |
32 | 25, 27, 30, 31 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2)) |
33 | | eluzelre 12449 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ ℝ) |
34 | 33 | rehalfcld 12077 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 / 2) ∈ ℝ) |
35 | 1 | nn0ge0d 12153 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
(ℤ≥‘2) → 0 ≤ 𝐴) |
36 | | 2re 11904 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
37 | | 2pos 11933 |
. . . . . . . . . . . . 13
⊢ 0 <
2 |
38 | 36, 37 | pm3.2i 474 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℝ ∧ 0 < 2) |
39 | 38 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
(ℤ≥‘2) → (2 ∈ ℝ ∧ 0 <
2)) |
40 | | divge0 11701 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (2 ∈ ℝ
∧ 0 < 2)) → 0 ≤ (𝐴 / 2)) |
41 | 33, 35, 39, 40 | syl21anc 838 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(ℤ≥‘2) → 0 ≤ (𝐴 / 2)) |
42 | | flge0nn0 13395 |
. . . . . . . . . 10
⊢ (((𝐴 / 2) ∈ ℝ ∧ 0
≤ (𝐴 / 2)) →
(⌊‘(𝐴 / 2))
∈ ℕ0) |
43 | 34, 41, 42 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝐴 ∈
(ℤ≥‘2) → (⌊‘(𝐴 / 2)) ∈
ℕ0) |
44 | 43 | 3ad2ant2 1136 |
. . . . . . . 8
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) →
(⌊‘(𝐴 / 2))
∈ ℕ0) |
45 | | nn0rp0 13043 |
. . . . . . . 8
⊢
((⌊‘(𝐴 /
2)) ∈ ℕ0 → (⌊‘(𝐴 / 2)) ∈
(0[,)+∞)) |
46 | 44, 45 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) →
(⌊‘(𝐴 / 2))
∈ (0[,)+∞)) |
47 | | nn0digval 45619 |
. . . . . . 7
⊢ ((2
∈ ℕ ∧ 𝐼
∈ ℕ0 ∧ (⌊‘(𝐴 / 2)) ∈ (0[,)+∞)) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) =
((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2)) |
48 | 25, 20, 46, 47 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) =
((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2)) |
49 | 23, 32, 48 | 3eqtr4d 2787 |
. . . . 5
⊢ ((((𝐴 + 1) / 2) ∈
ℕ0 ∧ 𝐴
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))) |
50 | 49 | 3exp 1121 |
. . . 4
⊢ (((𝐴 + 1) / 2) ∈
ℕ0 → (𝐴 ∈ (ℤ≥‘2)
→ (𝐼 ∈
ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))))) |
51 | 14, 50 | jaoi 857 |
. . 3
⊢ (((𝐴 / 2) ∈ ℕ0
∨ ((𝐴 + 1) / 2) ∈
ℕ0) → (𝐴 ∈ (ℤ≥‘2)
→ (𝐼 ∈
ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))))) |
52 | 3, 51 | mpcom 38 |
. 2
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))) |
53 | 52 | imp 410 |
1
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))) |