Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalf Structured version   Visualization version   GIF version

Theorem dignn0flhalf 48780
Description: The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010.)
Assertion
Ref Expression
dignn0flhalf ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))

Proof of Theorem dignn0flhalf
StepHypRef Expression
1 eluzge2nn0 12796 . . . 4 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
2 nn0eo 48690 . . . 4 (𝐴 ∈ ℕ0 → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
31, 2syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
4 dignn0ehalf 48779 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
51, 4syl3an2 1164 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
6 eluzelz 12752 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
7 nn0z 12503 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ ℤ)
8 zefldiv2 48692 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
96, 7, 8syl2anr 597 . . . . . . . . 9 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
109eqcomd 2739 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
11103adant3 1132 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
1211oveq2d 7371 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
135, 12eqtrd 2768 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
14133exp 1119 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
1563ad2ant2 1134 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ ℤ)
16 simp2 1137 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
17 simp1 1136 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 + 1) / 2) ∈ ℕ0)
18 nno 16300 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝐴 + 1) / 2) ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
1916, 17, 18syl2anc 584 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
20 simp3 1138 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
21 dignn0flhalflem2 48778 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2215, 19, 20, 21syl3anc 1373 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2322oveq1d 7370 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
24 2nn 12209 . . . . . . . 8 2 ∈ ℕ
2524a1i 11 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℕ)
26 peano2nn0 12432 . . . . . . . 8 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
27263ad2ant3 1135 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
28 nn0rp0 13362 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
291, 28syl 17 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ (0[,)+∞))
30293ad2ant2 1134 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
31 nn0digval 48762 . . . . . . 7 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3225, 27, 30, 31syl3anc 1373 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
33 eluzelre 12753 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3433rehalfcld 12379 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 / 2) ∈ ℝ)
351nn0ge0d 12456 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
36 2re 12210 . . . . . . . . . . . . 13 2 ∈ ℝ
37 2pos 12239 . . . . . . . . . . . . 13 0 < 2
3836, 37pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
3938a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
40 divge0 12002 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝐴 / 2))
4133, 35, 39, 40syl21anc 837 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 / 2))
42 flge0nn0 13731 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℝ ∧ 0 ≤ (𝐴 / 2)) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
4334, 41, 42syl2anc 584 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
44433ad2ant2 1134 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
45 nn0rp0 13362 . . . . . . . 8 ((⌊‘(𝐴 / 2)) ∈ ℕ0 → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
4644, 45syl 17 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
47 nn0digval 48762 . . . . . . 7 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (⌊‘(𝐴 / 2)) ∈ (0[,)+∞)) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4825, 20, 46, 47syl3anc 1373 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4923, 32, 483eqtr4d 2778 . . . . 5 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
50493exp 1119 . . . 4 (((𝐴 + 1) / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
5114, 50jaoi 857 . . 3 (((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0) → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
523, 51mpcom 38 . 2 (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))))
5352imp 406 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  cr 11016  0cc0 11017  1c1 11018   + caddc 11020  +∞cpnf 11154   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  2c2 12191  0cn0 12392  cz 12479  cuz 12742  [,)cico 13254  cfl 13701   mod cmo 13780  cexp 13975  digitcdig 48757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-ico 13258  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-dig 48758
This theorem is referenced by:  nn0sumshdiglemB  48782
  Copyright terms: Public domain W3C validator