Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalf Structured version   Visualization version   GIF version

Theorem dignn0flhalf 45637
Description: The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010.)
Assertion
Ref Expression
dignn0flhalf ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))

Proof of Theorem dignn0flhalf
StepHypRef Expression
1 eluzge2nn0 12483 . . . 4 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
2 nn0eo 45547 . . . 4 (𝐴 ∈ ℕ0 → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
31, 2syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
4 dignn0ehalf 45636 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
51, 4syl3an2 1166 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
6 eluzelz 12448 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
7 nn0z 12200 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ ℤ)
8 zefldiv2 45549 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
96, 7, 8syl2anr 600 . . . . . . . . 9 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
109eqcomd 2743 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
11103adant3 1134 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
1211oveq2d 7229 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
135, 12eqtrd 2777 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
14133exp 1121 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
1563ad2ant2 1136 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ ℤ)
16 simp2 1139 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
17 simp1 1138 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 + 1) / 2) ∈ ℕ0)
18 nno 15943 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝐴 + 1) / 2) ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
1916, 17, 18syl2anc 587 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
20 simp3 1140 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
21 dignn0flhalflem2 45635 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2215, 19, 20, 21syl3anc 1373 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2322oveq1d 7228 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
24 2nn 11903 . . . . . . . 8 2 ∈ ℕ
2524a1i 11 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℕ)
26 peano2nn0 12130 . . . . . . . 8 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
27263ad2ant3 1137 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
28 nn0rp0 13043 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
291, 28syl 17 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ (0[,)+∞))
30293ad2ant2 1136 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
31 nn0digval 45619 . . . . . . 7 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3225, 27, 30, 31syl3anc 1373 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
33 eluzelre 12449 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3433rehalfcld 12077 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 / 2) ∈ ℝ)
351nn0ge0d 12153 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
36 2re 11904 . . . . . . . . . . . . 13 2 ∈ ℝ
37 2pos 11933 . . . . . . . . . . . . 13 0 < 2
3836, 37pm3.2i 474 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
3938a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
40 divge0 11701 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝐴 / 2))
4133, 35, 39, 40syl21anc 838 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 / 2))
42 flge0nn0 13395 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℝ ∧ 0 ≤ (𝐴 / 2)) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
4334, 41, 42syl2anc 587 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
44433ad2ant2 1136 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
45 nn0rp0 13043 . . . . . . . 8 ((⌊‘(𝐴 / 2)) ∈ ℕ0 → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
4644, 45syl 17 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
47 nn0digval 45619 . . . . . . 7 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (⌊‘(𝐴 / 2)) ∈ (0[,)+∞)) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4825, 20, 46, 47syl3anc 1373 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4923, 32, 483eqtr4d 2787 . . . . 5 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
50493exp 1121 . . . 4 (((𝐴 + 1) / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
5114, 50jaoi 857 . . 3 (((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0) → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
523, 51mpcom 38 . 2 (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))))
5352imp 410 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732  +∞cpnf 10864   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  2c2 11885  0cn0 12090  cz 12176  cuz 12438  [,)cico 12937  cfl 13365   mod cmo 13442  cexp 13635  digitcdig 45614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ico 12941  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-dig 45615
This theorem is referenced by:  nn0sumshdiglemB  45639
  Copyright terms: Public domain W3C validator