Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalf Structured version   Visualization version   GIF version

Theorem dignn0flhalf 45964
Description: The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010.)
Assertion
Ref Expression
dignn0flhalf ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))

Proof of Theorem dignn0flhalf
StepHypRef Expression
1 eluzge2nn0 12627 . . . 4 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
2 nn0eo 45874 . . . 4 (𝐴 ∈ ℕ0 → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
31, 2syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
4 dignn0ehalf 45963 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
51, 4syl3an2 1163 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
6 eluzelz 12592 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
7 nn0z 12343 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ ℤ)
8 zefldiv2 45876 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
96, 7, 8syl2anr 597 . . . . . . . . 9 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
109eqcomd 2744 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
11103adant3 1131 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
1211oveq2d 7291 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
135, 12eqtrd 2778 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
14133exp 1118 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
1563ad2ant2 1133 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ ℤ)
16 simp2 1136 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
17 simp1 1135 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 + 1) / 2) ∈ ℕ0)
18 nno 16091 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝐴 + 1) / 2) ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
1916, 17, 18syl2anc 584 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
20 simp3 1137 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
21 dignn0flhalflem2 45962 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2215, 19, 20, 21syl3anc 1370 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2322oveq1d 7290 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
24 2nn 12046 . . . . . . . 8 2 ∈ ℕ
2524a1i 11 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℕ)
26 peano2nn0 12273 . . . . . . . 8 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
27263ad2ant3 1134 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
28 nn0rp0 13187 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
291, 28syl 17 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ (0[,)+∞))
30293ad2ant2 1133 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
31 nn0digval 45946 . . . . . . 7 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3225, 27, 30, 31syl3anc 1370 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
33 eluzelre 12593 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3433rehalfcld 12220 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 / 2) ∈ ℝ)
351nn0ge0d 12296 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
36 2re 12047 . . . . . . . . . . . . 13 2 ∈ ℝ
37 2pos 12076 . . . . . . . . . . . . 13 0 < 2
3836, 37pm3.2i 471 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
3938a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
40 divge0 11844 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝐴 / 2))
4133, 35, 39, 40syl21anc 835 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 / 2))
42 flge0nn0 13540 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℝ ∧ 0 ≤ (𝐴 / 2)) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
4334, 41, 42syl2anc 584 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
44433ad2ant2 1133 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
45 nn0rp0 13187 . . . . . . . 8 ((⌊‘(𝐴 / 2)) ∈ ℕ0 → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
4644, 45syl 17 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
47 nn0digval 45946 . . . . . . 7 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (⌊‘(𝐴 / 2)) ∈ (0[,)+∞)) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4825, 20, 46, 47syl3anc 1370 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4923, 32, 483eqtr4d 2788 . . . . 5 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
50493exp 1118 . . . 4 (((𝐴 + 1) / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
5114, 50jaoi 854 . . 3 (((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0) → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
523, 51mpcom 38 . 2 (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))))
5352imp 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  +∞cpnf 11006   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  [,)cico 13081  cfl 13510   mod cmo 13589  cexp 13782  digitcdig 45941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-dig 45942
This theorem is referenced by:  nn0sumshdiglemB  45966
  Copyright terms: Public domain W3C validator