Step | Hyp | Ref
| Expression |
1 | | prodfdiv.1 |
. . . 4
β’ (π β π β (β€β₯βπ)) |
2 | | prodfdiv.3 |
. . . 4
β’ ((π β§ π β (π...π)) β (πΊβπ) β β) |
3 | | prodfdiv.4 |
. . . 4
β’ ((π β§ π β (π...π)) β (πΊβπ) β 0) |
4 | | fveq2 6891 |
. . . . . . 7
β’ (π = π β (πΊβπ) = (πΊβπ)) |
5 | 4 | oveq2d 7424 |
. . . . . 6
β’ (π = π β (1 / (πΊβπ)) = (1 / (πΊβπ))) |
6 | | eqid 2732 |
. . . . . 6
β’ (π β (π...π) β¦ (1 / (πΊβπ))) = (π β (π...π) β¦ (1 / (πΊβπ))) |
7 | | ovex 7441 |
. . . . . 6
β’ (1 /
(πΊβπ)) β V |
8 | 5, 6, 7 | fvmpt 6998 |
. . . . 5
β’ (π β (π...π) β ((π β (π...π) β¦ (1 / (πΊβπ)))βπ) = (1 / (πΊβπ))) |
9 | 8 | adantl 482 |
. . . 4
β’ ((π β§ π β (π...π)) β ((π β (π...π) β¦ (1 / (πΊβπ)))βπ) = (1 / (πΊβπ))) |
10 | 1, 2, 3, 9 | prodfrec 15840 |
. . 3
β’ (π β (seqπ( Β· , (π β (π...π) β¦ (1 / (πΊβπ))))βπ) = (1 / (seqπ( Β· , πΊ)βπ))) |
11 | 10 | oveq2d 7424 |
. 2
β’ (π β ((seqπ( Β· , πΉ)βπ) Β· (seqπ( Β· , (π β (π...π) β¦ (1 / (πΊβπ))))βπ)) = ((seqπ( Β· , πΉ)βπ) Β· (1 / (seqπ( Β· , πΊ)βπ)))) |
12 | | prodfdiv.2 |
. . 3
β’ ((π β§ π β (π...π)) β (πΉβπ) β β) |
13 | | eleq1w 2816 |
. . . . . . . . 9
β’ (π = π β (π β (π...π) β π β (π...π))) |
14 | 13 | anbi2d 629 |
. . . . . . . 8
β’ (π = π β ((π β§ π β (π...π)) β (π β§ π β (π...π)))) |
15 | | fveq2 6891 |
. . . . . . . . 9
β’ (π = π β (πΊβπ) = (πΊβπ)) |
16 | 15 | eleq1d 2818 |
. . . . . . . 8
β’ (π = π β ((πΊβπ) β β β (πΊβπ) β β)) |
17 | 14, 16 | imbi12d 344 |
. . . . . . 7
β’ (π = π β (((π β§ π β (π...π)) β (πΊβπ) β β) β ((π β§ π β (π...π)) β (πΊβπ) β β))) |
18 | 17, 2 | chvarvv 2002 |
. . . . . 6
β’ ((π β§ π β (π...π)) β (πΊβπ) β β) |
19 | 15 | neeq1d 3000 |
. . . . . . . 8
β’ (π = π β ((πΊβπ) β 0 β (πΊβπ) β 0)) |
20 | 14, 19 | imbi12d 344 |
. . . . . . 7
β’ (π = π β (((π β§ π β (π...π)) β (πΊβπ) β 0) β ((π β§ π β (π...π)) β (πΊβπ) β 0))) |
21 | 20, 3 | chvarvv 2002 |
. . . . . 6
β’ ((π β§ π β (π...π)) β (πΊβπ) β 0) |
22 | 18, 21 | reccld 11982 |
. . . . 5
β’ ((π β§ π β (π...π)) β (1 / (πΊβπ)) β β) |
23 | 22 | fmpttd 7114 |
. . . 4
β’ (π β (π β (π...π) β¦ (1 / (πΊβπ))):(π...π)βΆβ) |
24 | 23 | ffvelcdmda 7086 |
. . 3
β’ ((π β§ π β (π...π)) β ((π β (π...π) β¦ (1 / (πΊβπ)))βπ) β β) |
25 | 12, 2, 3 | divrecd 11992 |
. . . 4
β’ ((π β§ π β (π...π)) β ((πΉβπ) / (πΊβπ)) = ((πΉβπ) Β· (1 / (πΊβπ)))) |
26 | | prodfdiv.5 |
. . . 4
β’ ((π β§ π β (π...π)) β (π»βπ) = ((πΉβπ) / (πΊβπ))) |
27 | 9 | oveq2d 7424 |
. . . 4
β’ ((π β§ π β (π...π)) β ((πΉβπ) Β· ((π β (π...π) β¦ (1 / (πΊβπ)))βπ)) = ((πΉβπ) Β· (1 / (πΊβπ)))) |
28 | 25, 26, 27 | 3eqtr4d 2782 |
. . 3
β’ ((π β§ π β (π...π)) β (π»βπ) = ((πΉβπ) Β· ((π β (π...π) β¦ (1 / (πΊβπ)))βπ))) |
29 | 1, 12, 24, 28 | prodfmul 15835 |
. 2
β’ (π β (seqπ( Β· , π»)βπ) = ((seqπ( Β· , πΉ)βπ) Β· (seqπ( Β· , (π β (π...π) β¦ (1 / (πΊβπ))))βπ))) |
30 | | mulcl 11193 |
. . . . 5
β’ ((π β β β§ π₯ β β) β (π Β· π₯) β β) |
31 | 30 | adantl 482 |
. . . 4
β’ ((π β§ (π β β β§ π₯ β β)) β (π Β· π₯) β β) |
32 | 1, 12, 31 | seqcl 13987 |
. . 3
β’ (π β (seqπ( Β· , πΉ)βπ) β β) |
33 | 1, 2, 31 | seqcl 13987 |
. . 3
β’ (π β (seqπ( Β· , πΊ)βπ) β β) |
34 | 1, 2, 3 | prodfn0 15839 |
. . 3
β’ (π β (seqπ( Β· , πΊ)βπ) β 0) |
35 | 32, 33, 34 | divrecd 11992 |
. 2
β’ (π β ((seqπ( Β· , πΉ)βπ) / (seqπ( Β· , πΊ)βπ)) = ((seqπ( Β· , πΉ)βπ) Β· (1 / (seqπ( Β· , πΊ)βπ)))) |
36 | 11, 29, 35 | 3eqtr4d 2782 |
1
β’ (π β (seqπ( Β· , π»)βπ) = ((seqπ( Β· , πΉ)βπ) / (seqπ( Β· , πΊ)βπ))) |