MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfdiv Structured version   Visualization version   GIF version

Theorem prodfdiv 15699
Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfdiv.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfdiv.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfdiv.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
prodfdiv.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
prodfdiv.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
prodfdiv (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfdiv
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 prodfdiv.3 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
3 prodfdiv.4 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
4 fveq2 6819 . . . . . . 7 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
54oveq2d 7345 . . . . . 6 (𝑛 = 𝑘 → (1 / (𝐺𝑛)) = (1 / (𝐺𝑘)))
6 eqid 2736 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))
7 ovex 7362 . . . . . 6 (1 / (𝐺𝑘)) ∈ V
85, 6, 7fvmpt 6925 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
98adantl 482 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
101, 2, 3, 9prodfrec 15698 . . 3 (𝜑 → (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁)))
1110oveq2d 7345 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
12 prodfdiv.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
13 eleq1w 2819 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1413anbi2d 629 . . . . . . . 8 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
15 fveq2 6819 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
1615eleq1d 2821 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑛) ∈ ℂ))
1714, 16imbi12d 344 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)))
1817, 2chvarvv 2001 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)
1915neeq1d 3000 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ≠ 0 ↔ (𝐺𝑛) ≠ 0))
2014, 19imbi12d 344 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)))
2120, 3chvarvv 2001 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)
2218, 21reccld 11837 . . . . 5 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (1 / (𝐺𝑛)) ∈ ℂ)
2322fmpttd 7039 . . . 4 (𝜑 → (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))):(𝑀...𝑁)⟶ℂ)
2423ffvelcdmda 7011 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
2512, 2, 3divrecd 11847 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
26 prodfdiv.5 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
279oveq2d 7345 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
2825, 26, 273eqtr4d 2786 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)))
291, 12, 24, 28prodfmul 15693 . 2 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)))
30 mulcl 11048 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
3130adantl 482 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
321, 12, 31seqcl 13836 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
331, 2, 31seqcl 13836 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ)
341, 2, 3prodfn0 15697 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ≠ 0)
3532, 33, 34divrecd 11847 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
3611, 29, 353eqtr4d 2786 1 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  cmpt 5172  cfv 6473  (class class class)co 7329  cc 10962  0cc0 10964  1c1 10965   · cmul 10969   / cdiv 11725  cuz 12675  ...cfz 13332  seqcseq 13814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333  df-fzo 13476  df-seq 13815
This theorem is referenced by:  fproddiv  15762
  Copyright terms: Public domain W3C validator