MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfdiv Structured version   Visualization version   GIF version

Theorem prodfdiv 15917
Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfdiv.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfdiv.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfdiv.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
prodfdiv.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
prodfdiv.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
prodfdiv (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfdiv
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 prodfdiv.3 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
3 prodfdiv.4 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
4 fveq2 6881 . . . . . . 7 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
54oveq2d 7426 . . . . . 6 (𝑛 = 𝑘 → (1 / (𝐺𝑛)) = (1 / (𝐺𝑘)))
6 eqid 2736 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))
7 ovex 7443 . . . . . 6 (1 / (𝐺𝑘)) ∈ V
85, 6, 7fvmpt 6991 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
98adantl 481 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
101, 2, 3, 9prodfrec 15916 . . 3 (𝜑 → (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁)))
1110oveq2d 7426 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
12 prodfdiv.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
13 eleq1w 2818 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1413anbi2d 630 . . . . . . . 8 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
15 fveq2 6881 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
1615eleq1d 2820 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑛) ∈ ℂ))
1714, 16imbi12d 344 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)))
1817, 2chvarvv 1989 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)
1915neeq1d 2992 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ≠ 0 ↔ (𝐺𝑛) ≠ 0))
2014, 19imbi12d 344 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)))
2120, 3chvarvv 1989 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)
2218, 21reccld 12015 . . . . 5 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (1 / (𝐺𝑛)) ∈ ℂ)
2322fmpttd 7110 . . . 4 (𝜑 → (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))):(𝑀...𝑁)⟶ℂ)
2423ffvelcdmda 7079 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
2512, 2, 3divrecd 12025 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
26 prodfdiv.5 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
279oveq2d 7426 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
2825, 26, 273eqtr4d 2781 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)))
291, 12, 24, 28prodfmul 15911 . 2 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)))
30 mulcl 11218 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
3130adantl 481 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
321, 12, 31seqcl 14045 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
331, 2, 31seqcl 14045 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ)
341, 2, 3prodfn0 15915 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ≠ 0)
3532, 33, 34divrecd 12025 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
3611, 29, 353eqtr4d 2781 1 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   · cmul 11139   / cdiv 11899  cuz 12857  ...cfz 13529  seqcseq 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025
This theorem is referenced by:  fproddiv  15982
  Copyright terms: Public domain W3C validator