MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfdiv Structured version   Visualization version   GIF version

Theorem prodfdiv 15944
Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfdiv.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfdiv.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfdiv.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
prodfdiv.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
prodfdiv.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
prodfdiv (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfdiv
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 prodfdiv.3 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
3 prodfdiv.4 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
4 fveq2 6920 . . . . . . 7 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
54oveq2d 7464 . . . . . 6 (𝑛 = 𝑘 → (1 / (𝐺𝑛)) = (1 / (𝐺𝑘)))
6 eqid 2740 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))
7 ovex 7481 . . . . . 6 (1 / (𝐺𝑘)) ∈ V
85, 6, 7fvmpt 7029 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
98adantl 481 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
101, 2, 3, 9prodfrec 15943 . . 3 (𝜑 → (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁)))
1110oveq2d 7464 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
12 prodfdiv.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
13 eleq1w 2827 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1413anbi2d 629 . . . . . . . 8 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
15 fveq2 6920 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
1615eleq1d 2829 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑛) ∈ ℂ))
1714, 16imbi12d 344 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)))
1817, 2chvarvv 1998 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)
1915neeq1d 3006 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ≠ 0 ↔ (𝐺𝑛) ≠ 0))
2014, 19imbi12d 344 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)))
2120, 3chvarvv 1998 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)
2218, 21reccld 12063 . . . . 5 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (1 / (𝐺𝑛)) ∈ ℂ)
2322fmpttd 7149 . . . 4 (𝜑 → (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))):(𝑀...𝑁)⟶ℂ)
2423ffvelcdmda 7118 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
2512, 2, 3divrecd 12073 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
26 prodfdiv.5 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
279oveq2d 7464 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
2825, 26, 273eqtr4d 2790 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)))
291, 12, 24, 28prodfmul 15938 . 2 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)))
30 mulcl 11268 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
3130adantl 481 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
321, 12, 31seqcl 14073 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
331, 2, 31seqcl 14073 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ)
341, 2, 3prodfn0 15942 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ≠ 0)
3532, 33, 34divrecd 12073 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
3611, 29, 353eqtr4d 2790 1 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   · cmul 11189   / cdiv 11947  cuz 12903  ...cfz 13567  seqcseq 14052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053
This theorem is referenced by:  fproddiv  16009
  Copyright terms: Public domain W3C validator