Step | Hyp | Ref
| Expression |
1 | | prodfdiv.1 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | prodfdiv.3 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℂ) |
3 | | prodfdiv.4 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ≠ 0) |
4 | | fveq2 6674 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
5 | 4 | oveq2d 7186 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (1 / (𝐺‘𝑛)) = (1 / (𝐺‘𝑘))) |
6 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛))) |
7 | | ovex 7203 |
. . . . . 6
⊢ (1 /
(𝐺‘𝑘)) ∈ V |
8 | 5, 6, 7 | fvmpt 6775 |
. . . . 5
⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛)))‘𝑘) = (1 / (𝐺‘𝑘))) |
9 | 8 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛)))‘𝑘) = (1 / (𝐺‘𝑘))) |
10 | 1, 2, 3, 9 | prodfrec 15343 |
. . 3
⊢ (𝜑 → (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁))) |
11 | 10 | oveq2d 7186 |
. 2
⊢ (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁)))) |
12 | | prodfdiv.2 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
13 | | eleq1w 2815 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) |
14 | 13 | anbi2d 632 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)))) |
15 | | fveq2 6674 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝐺‘𝑘) = (𝐺‘𝑛)) |
16 | 15 | eleq1d 2817 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑛) ∈ ℂ)) |
17 | 14, 16 | imbi12d 348 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐺‘𝑛) ∈ ℂ))) |
18 | 17, 2 | chvarvv 2010 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐺‘𝑛) ∈ ℂ) |
19 | 15 | neeq1d 2993 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐺‘𝑘) ≠ 0 ↔ (𝐺‘𝑛) ≠ 0)) |
20 | 14, 19 | imbi12d 348 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ≠ 0) ↔ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐺‘𝑛) ≠ 0))) |
21 | 20, 3 | chvarvv 2010 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐺‘𝑛) ≠ 0) |
22 | 18, 21 | reccld 11487 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → (1 / (𝐺‘𝑛)) ∈ ℂ) |
23 | 22 | fmpttd 6889 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛))):(𝑀...𝑁)⟶ℂ) |
24 | 23 | ffvelrnda 6861 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛)))‘𝑘) ∈ ℂ) |
25 | 12, 2, 3 | divrecd 11497 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐹‘𝑘) / (𝐺‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) |
26 | | prodfdiv.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) |
27 | 9 | oveq2d 7186 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐹‘𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛)))‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) |
28 | 25, 26, 27 | 3eqtr4d 2783 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛)))‘𝑘))) |
29 | 1, 12, 24, 28 | prodfmul 15338 |
. 2
⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺‘𝑛))))‘𝑁))) |
30 | | mulcl 10699 |
. . . . 5
⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ) |
31 | 30 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ) |
32 | 1, 12, 31 | seqcl 13482 |
. . 3
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ) |
33 | 1, 2, 31 | seqcl 13482 |
. . 3
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ) |
34 | 1, 2, 3 | prodfn0 15342 |
. . 3
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ≠ 0) |
35 | 32, 33, 34 | divrecd 11497 |
. 2
⊢ (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁)))) |
36 | 11, 29, 35 | 3eqtr4d 2783 |
1
⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁))) |