MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfdiv Structured version   Visualization version   GIF version

Theorem prodfdiv 15821
Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfdiv.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfdiv.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfdiv.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
prodfdiv.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
prodfdiv.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
prodfdiv (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfdiv
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 prodfdiv.3 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
3 prodfdiv.4 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
4 fveq2 6826 . . . . . . 7 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
54oveq2d 7369 . . . . . 6 (𝑛 = 𝑘 → (1 / (𝐺𝑛)) = (1 / (𝐺𝑘)))
6 eqid 2729 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))
7 ovex 7386 . . . . . 6 (1 / (𝐺𝑘)) ∈ V
85, 6, 7fvmpt 6934 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
98adantl 481 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
101, 2, 3, 9prodfrec 15820 . . 3 (𝜑 → (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁)))
1110oveq2d 7369 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
12 prodfdiv.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
13 eleq1w 2811 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1413anbi2d 630 . . . . . . . 8 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
15 fveq2 6826 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
1615eleq1d 2813 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑛) ∈ ℂ))
1714, 16imbi12d 344 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)))
1817, 2chvarvv 1989 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)
1915neeq1d 2984 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ≠ 0 ↔ (𝐺𝑛) ≠ 0))
2014, 19imbi12d 344 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)))
2120, 3chvarvv 1989 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)
2218, 21reccld 11911 . . . . 5 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (1 / (𝐺𝑛)) ∈ ℂ)
2322fmpttd 7053 . . . 4 (𝜑 → (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))):(𝑀...𝑁)⟶ℂ)
2423ffvelcdmda 7022 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
2512, 2, 3divrecd 11921 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
26 prodfdiv.5 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
279oveq2d 7369 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
2825, 26, 273eqtr4d 2774 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)))
291, 12, 24, 28prodfmul 15815 . 2 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)))
30 mulcl 11112 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
3130adantl 481 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
321, 12, 31seqcl 13947 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
331, 2, 31seqcl 13947 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ)
341, 2, 3prodfn0 15819 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ≠ 0)
3532, 33, 34divrecd 11921 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
3611, 29, 353eqtr4d 2774 1 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   · cmul 11033   / cdiv 11795  cuz 12753  ...cfz 13428  seqcseq 13926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927
This theorem is referenced by:  fproddiv  15886
  Copyright terms: Public domain W3C validator