MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfn0 Structured version   Visualization version   GIF version

Theorem prodfn0 15931
Description: No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018.)
Hypotheses
Ref Expression
prodfn0.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfn0.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfn0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
Assertion
Ref Expression
prodfn0 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfn0
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfn0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13573 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6905 . . . . 5 (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀))
54neeq1d 2999 . . . 4 (𝑚 = 𝑀 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))
65imbi2d 340 . . 3 (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0)))
7 fveq2 6905 . . . . 5 (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛))
87neeq1d 2999 . . . 4 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0))
98imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0)))
10 fveq2 6905 . . . . 5 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
1110neeq1d 2999 . . . 4 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0))
1211imbi2d 340 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
13 fveq2 6905 . . . . 5 (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁))
1413neeq1d 2999 . . . 4 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) ≠ 0))
1514imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)))
16 eluzfz1 13572 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
17 elfzelz 13565 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
1817adantl 481 . . . . . . 7 ((𝜑𝑀 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
19 seq1 14056 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
2018, 19syl 17 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
21 fveq2 6905 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2221neeq1d 2999 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) ≠ 0 ↔ (𝐹𝑀) ≠ 0))
2322imbi2d 340 . . . . . . . 8 (𝑘 = 𝑀 → ((𝜑 → (𝐹𝑘) ≠ 0) ↔ (𝜑 → (𝐹𝑀) ≠ 0)))
24 prodfn0.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
2524expcom 413 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ≠ 0))
2623, 25vtoclga 3576 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑀) ≠ 0))
2726impcom 407 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (𝐹𝑀) ≠ 0)
2820, 27eqnetrd 3007 . . . . 5 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0)
2928expcom 413 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))
3016, 29syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))
31 elfzouz 13704 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
32313ad2ant2 1134 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → 𝑛 ∈ (ℤ𝑀))
33 seqp1 14058 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
3432, 33syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
35 elfzofz 13716 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (𝑀...𝑁))
36 elfzuz 13561 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
3736adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝑁)) → 𝑛 ∈ (ℤ𝑀))
38 elfzuz3 13562 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
39 fzss2 13605 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
4038, 39syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝑀...𝑁) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
4140sselda 3982 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁))
42 prodfn0.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
4341, 42sylan2 593 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹𝑘) ∈ ℂ)
4443anassrs 467 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
45 mulcl 11240 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
4645adantl 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
4737, 44, 46seqcl 14064 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
4835, 47sylan2 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
49483adant3 1132 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
50 fzofzp1 13804 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
51 fveq2 6905 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
5251eleq1d 2825 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
5352imbi2d 340 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)))
5442expcom 413 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ∈ ℂ))
5553, 54vtoclga 3576 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5650, 55syl 17 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5756impcom 407 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
58573adant3 1132 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
59 simp3 1138 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0)
6051neeq1d 2999 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≠ 0 ↔ (𝐹‘(𝑛 + 1)) ≠ 0))
6160imbi2d 340 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ≠ 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0)))
6261, 25vtoclga 3576 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0))
6362impcom 407 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0)
6450, 63sylan2 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0)
65643adant3 1132 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝐹‘(𝑛 + 1)) ≠ 0)
6649, 58, 59, 65mulne0d 11916 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) ≠ 0)
6734, 66eqnetrd 3007 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)
68673exp 1119 . . . . 5 (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐹)‘𝑛) ≠ 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
6968com12 32 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) ≠ 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
7069a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
716, 9, 12, 15, 30, 70fzind2 13825 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0))
723, 71mpcom 38 1 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wss 3950  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cz 12615  cuz 12879  ...cfz 13548  ..^cfzo 13695  seqcseq 14043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044
This theorem is referenced by:  prodfrec  15932  prodfdiv  15933  fprodn0  16016
  Copyright terms: Public domain W3C validator