MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfn0 Structured version   Visualization version   GIF version

Theorem prodfn0 15606
Description: No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018.)
Hypotheses
Ref Expression
prodfn0.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfn0.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfn0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
Assertion
Ref Expression
prodfn0 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfn0
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfn0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13264 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6774 . . . . 5 (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀))
54neeq1d 3003 . . . 4 (𝑚 = 𝑀 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))
65imbi2d 341 . . 3 (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0)))
7 fveq2 6774 . . . . 5 (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛))
87neeq1d 3003 . . . 4 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0))
98imbi2d 341 . . 3 (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0)))
10 fveq2 6774 . . . . 5 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
1110neeq1d 3003 . . . 4 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0))
1211imbi2d 341 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
13 fveq2 6774 . . . . 5 (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁))
1413neeq1d 3003 . . . 4 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) ≠ 0))
1514imbi2d 341 . . 3 (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)))
16 eluzfz1 13263 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
17 elfzelz 13256 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
1817adantl 482 . . . . . . 7 ((𝜑𝑀 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
19 seq1 13734 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
2018, 19syl 17 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
21 fveq2 6774 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2221neeq1d 3003 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) ≠ 0 ↔ (𝐹𝑀) ≠ 0))
2322imbi2d 341 . . . . . . . 8 (𝑘 = 𝑀 → ((𝜑 → (𝐹𝑘) ≠ 0) ↔ (𝜑 → (𝐹𝑀) ≠ 0)))
24 prodfn0.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
2524expcom 414 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ≠ 0))
2623, 25vtoclga 3513 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑀) ≠ 0))
2726impcom 408 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (𝐹𝑀) ≠ 0)
2820, 27eqnetrd 3011 . . . . 5 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0)
2928expcom 414 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))
3016, 29syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))
31 elfzouz 13391 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
32313ad2ant2 1133 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → 𝑛 ∈ (ℤ𝑀))
33 seqp1 13736 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
3432, 33syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
35 elfzofz 13403 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (𝑀...𝑁))
36 elfzuz 13252 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
3736adantl 482 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝑁)) → 𝑛 ∈ (ℤ𝑀))
38 elfzuz3 13253 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
39 fzss2 13296 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
4038, 39syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝑀...𝑁) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
4140sselda 3921 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁))
42 prodfn0.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
4341, 42sylan2 593 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹𝑘) ∈ ℂ)
4443anassrs 468 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
45 mulcl 10955 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
4645adantl 482 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
4737, 44, 46seqcl 13743 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
4835, 47sylan2 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
49483adant3 1131 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
50 fzofzp1 13484 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
51 fveq2 6774 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
5251eleq1d 2823 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
5352imbi2d 341 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)))
5442expcom 414 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ∈ ℂ))
5553, 54vtoclga 3513 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5650, 55syl 17 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5756impcom 408 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
58573adant3 1131 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
59 simp3 1137 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0)
6051neeq1d 3003 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≠ 0 ↔ (𝐹‘(𝑛 + 1)) ≠ 0))
6160imbi2d 341 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ≠ 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0)))
6261, 25vtoclga 3513 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0))
6362impcom 408 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0)
6450, 63sylan2 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0)
65643adant3 1131 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝐹‘(𝑛 + 1)) ≠ 0)
6649, 58, 59, 65mulne0d 11627 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) ≠ 0)
6734, 66eqnetrd 3011 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)
68673exp 1118 . . . . 5 (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐹)‘𝑛) ≠ 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
6968com12 32 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) ≠ 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
7069a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
716, 9, 12, 15, 30, 70fzind2 13505 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0))
723, 71mpcom 38 1 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wss 3887  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382  seqcseq 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722
This theorem is referenced by:  prodfrec  15607  prodfdiv  15608  fprodn0  15689
  Copyright terms: Public domain W3C validator