Step | Hyp | Ref
| Expression |
1 | | prodfn0.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 13264 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | fveq2 6774 |
. . . . 5
⊢ (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀)) |
5 | 4 | neeq1d 3003 |
. . . 4
⊢ (𝑚 = 𝑀 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑀) ≠ 0)) |
6 | 5 | imbi2d 341 |
. . 3
⊢ (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))) |
7 | | fveq2 6774 |
. . . . 5
⊢ (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛)) |
8 | 7 | neeq1d 3003 |
. . . 4
⊢ (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0)) |
9 | 8 | imbi2d 341 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0))) |
10 | | fveq2 6774 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1))) |
11 | 10 | neeq1d 3003 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)) |
12 | 11 | imbi2d 341 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0))) |
13 | | fveq2 6774 |
. . . . 5
⊢ (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁)) |
14 | 13 | neeq1d 3003 |
. . . 4
⊢ (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)) |
15 | 14 | imbi2d 341 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0))) |
16 | | eluzfz1 13263 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
17 | | elfzelz 13256 |
. . . . . . . 8
⊢ (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
18 | 17 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
19 | | seq1 13734 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
20 | 18, 19 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
21 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
22 | 21 | neeq1d 3003 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ≠ 0 ↔ (𝐹‘𝑀) ≠ 0)) |
23 | 22 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → ((𝜑 → (𝐹‘𝑘) ≠ 0) ↔ (𝜑 → (𝐹‘𝑀) ≠ 0))) |
24 | | prodfn0.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≠ 0) |
25 | 24 | expcom 414 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘𝑘) ≠ 0)) |
26 | 23, 25 | vtoclga 3513 |
. . . . . . 7
⊢ (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘𝑀) ≠ 0)) |
27 | 26 | impcom 408 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑀...𝑁)) → (𝐹‘𝑀) ≠ 0) |
28 | 20, 27 | eqnetrd 3011 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0) |
29 | 28 | expcom 414 |
. . . 4
⊢ (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0)) |
30 | 16, 29 | syl 17 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0)) |
31 | | elfzouz 13391 |
. . . . . . . . 9
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
32 | 31 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → 𝑛 ∈ (ℤ≥‘𝑀)) |
33 | | seqp1 13736 |
. . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
35 | | elfzofz 13403 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (𝑀...𝑁)) |
36 | | elfzuz 13252 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
37 | 36 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
38 | | elfzuz3 13253 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) |
39 | | fzss2 13296 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (𝑀...𝑁) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
41 | 40 | sselda 3921 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁)) |
42 | | prodfn0.2 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
43 | 41, 42 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹‘𝑘) ∈ ℂ) |
44 | 43 | anassrs 468 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
45 | | mulcl 10955 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ) |
46 | 45 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ) |
47 | 37, 44, 46 | seqcl 13743 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ) |
48 | 35, 47 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ) |
49 | 48 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ) |
50 | | fzofzp1 13484 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
51 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
52 | 51 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
53 | 52 | imbi2d 341 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹‘𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))) |
54 | 42 | expcom 414 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘𝑘) ∈ ℂ)) |
55 | 53, 54 | vtoclga 3513 |
. . . . . . . . . . 11
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
56 | 50, 55 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
57 | 56 | impcom 408 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ) |
58 | 57 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝐹‘(𝑛 + 1)) ∈ ℂ) |
59 | | simp3 1137 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) |
60 | 51 | neeq1d 3003 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ≠ 0 ↔ (𝐹‘(𝑛 + 1)) ≠ 0)) |
61 | 60 | imbi2d 341 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹‘𝑘) ≠ 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0))) |
62 | 61, 25 | vtoclga 3513 |
. . . . . . . . . . 11
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0)) |
63 | 62 | impcom 408 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0) |
64 | 50, 63 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0) |
65 | 64 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝐹‘(𝑛 + 1)) ≠ 0) |
66 | 49, 58, 59, 65 | mulne0d 11627 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) ≠ 0) |
67 | 34, 66 | eqnetrd 3011 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0) |
68 | 67 | 3exp 1118 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐹)‘𝑛) ≠ 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0))) |
69 | 68 | com12 32 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) ≠ 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0))) |
70 | 69 | a2d 29 |
. . 3
⊢ (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0))) |
71 | 6, 9, 12, 15, 30, 70 | fzind2 13505 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)) |
72 | 3, 71 | mpcom 38 |
1
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0) |