MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfn0 Structured version   Visualization version   GIF version

Theorem prodfn0 15867
Description: No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018.)
Hypotheses
Ref Expression
prodfn0.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfn0.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfn0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
Assertion
Ref Expression
prodfn0 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfn0
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfn0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13500 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6861 . . . . 5 (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀))
54neeq1d 2985 . . . 4 (𝑚 = 𝑀 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))
65imbi2d 340 . . 3 (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0)))
7 fveq2 6861 . . . . 5 (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛))
87neeq1d 2985 . . . 4 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0))
98imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0)))
10 fveq2 6861 . . . . 5 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
1110neeq1d 2985 . . . 4 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0))
1211imbi2d 340 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
13 fveq2 6861 . . . . 5 (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁))
1413neeq1d 2985 . . . 4 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) ≠ 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) ≠ 0))
1514imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) ≠ 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)))
16 eluzfz1 13499 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
17 elfzelz 13492 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
1817adantl 481 . . . . . . 7 ((𝜑𝑀 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
19 seq1 13986 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
2018, 19syl 17 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
21 fveq2 6861 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2221neeq1d 2985 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) ≠ 0 ↔ (𝐹𝑀) ≠ 0))
2322imbi2d 340 . . . . . . . 8 (𝑘 = 𝑀 → ((𝜑 → (𝐹𝑘) ≠ 0) ↔ (𝜑 → (𝐹𝑀) ≠ 0)))
24 prodfn0.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≠ 0)
2524expcom 413 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ≠ 0))
2623, 25vtoclga 3546 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑀) ≠ 0))
2726impcom 407 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (𝐹𝑀) ≠ 0)
2820, 27eqnetrd 2993 . . . . 5 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0)
2928expcom 413 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))
3016, 29syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) ≠ 0))
31 elfzouz 13631 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
32313ad2ant2 1134 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → 𝑛 ∈ (ℤ𝑀))
33 seqp1 13988 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
3432, 33syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
35 elfzofz 13643 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (𝑀...𝑁))
36 elfzuz 13488 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
3736adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝑁)) → 𝑛 ∈ (ℤ𝑀))
38 elfzuz3 13489 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
39 fzss2 13532 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
4038, 39syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝑀...𝑁) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
4140sselda 3949 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁))
42 prodfn0.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
4341, 42sylan2 593 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹𝑘) ∈ ℂ)
4443anassrs 467 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
45 mulcl 11159 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
4645adantl 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
4737, 44, 46seqcl 13994 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
4835, 47sylan2 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
49483adant3 1132 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
50 fzofzp1 13732 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
51 fveq2 6861 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
5251eleq1d 2814 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
5352imbi2d 340 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)))
5442expcom 413 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ∈ ℂ))
5553, 54vtoclga 3546 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5650, 55syl 17 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5756impcom 407 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
58573adant3 1132 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
59 simp3 1138 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0)
6051neeq1d 2985 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≠ 0 ↔ (𝐹‘(𝑛 + 1)) ≠ 0))
6160imbi2d 340 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ≠ 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0)))
6261, 25vtoclga 3546 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ≠ 0))
6362impcom 407 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0)
6450, 63sylan2 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ≠ 0)
65643adant3 1132 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝐹‘(𝑛 + 1)) ≠ 0)
6649, 58, 59, 65mulne0d 11837 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) ≠ 0)
6734, 66eqnetrd 2993 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)
68673exp 1119 . . . . 5 (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐹)‘𝑛) ≠ 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
6968com12 32 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) ≠ 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
7069a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) ≠ 0) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) ≠ 0)))
716, 9, 12, 15, 30, 70fzind2 13753 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0))
723, 71mpcom 38 1 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wss 3917  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622  seqcseq 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974
This theorem is referenced by:  prodfrec  15868  prodfdiv  15869  fprodn0  15952
  Copyright terms: Public domain W3C validator