| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pthdifv | Structured version Visualization version GIF version | ||
| Description: The vertices of a path are distinct (except the first and last vertex), so the restricted vertex function is one-to-one. (Contributed by AV, 2-Oct-2025.) |
| Ref | Expression |
|---|---|
| pthdifv | ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trliswlk 29681 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 2 | eqid 2731 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 3 | 2 | wlkp 29602 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 4 | fz1ssfz0 13529 | . . . . . . 7 ⊢ (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) |
| 6 | 3, 5 | fssresd 6696 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 8 | 7 | anim1i 615 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹)))) → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
| 9 | 8 | 3adant3 1132 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
| 10 | dfpth2 29714 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) | |
| 11 | df-f1 6492 | . 2 ⊢ ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∉ wnel 3032 ⊆ wss 3897 class class class wbr 5093 ◡ccnv 5618 ↾ cres 5621 “ cima 5622 Fun wfun 6481 ⟶wf 6483 –1-1→wf1 6484 ‘cfv 6487 (class class class)co 7352 0cc0 11012 1c1 11013 ...cfz 13413 ..^cfzo 13560 ♯chash 14243 Vtxcvtx 28981 Walkscwlks 29582 Trailsctrls 29674 Pathscpths 29695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-hash 14244 df-word 14427 df-wlks 29585 df-trls 29676 df-pths 29699 |
| This theorem is referenced by: cyclnumvtx 29785 |
| Copyright terms: Public domain | W3C validator |