![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pthdifv | Structured version Visualization version GIF version |
Description: The vertices of a path are distinct (except the first and last vertex), so the restricted vertex function is one-to-one. (Contributed by AV, 2-Oct-2025.) |
Ref | Expression |
---|---|
pthdifv | ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trliswlk 29662 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
2 | eqid 2734 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 2 | wlkp 29581 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
4 | fz1ssfz0 13646 | . . . . . . 7 ⊢ (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) |
6 | 3, 5 | fssresd 6756 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺)) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺)) |
8 | 7 | anim1i 615 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹)))) → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
9 | 8 | 3adant3 1132 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
10 | dfpth2 29696 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) | |
11 | df-f1 6547 | . 2 ⊢ ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) | |
12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∉ wnel 3035 ⊆ wss 3933 class class class wbr 5125 ◡ccnv 5666 ↾ cres 5669 “ cima 5670 Fun wfun 6536 ⟶wf 6538 –1-1→wf1 6539 ‘cfv 6542 (class class class)co 7414 0cc0 11138 1c1 11139 ...cfz 13530 ..^cfzo 13677 ♯chash 14352 Vtxcvtx 28960 Walkscwlks 29561 Trailsctrls 29655 Pathscpths 29677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-hash 14353 df-word 14536 df-wlks 29564 df-trls 29657 df-pths 29681 |
This theorem is referenced by: cyclnumvtx 29767 |
Copyright terms: Public domain | W3C validator |