| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz1ssfz0 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fz1ssfz0 | ⊢ (1...𝑁) ⊆ (0...𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1e0p1 12750 | . . 3 ⊢ 1 = (0 + 1) | |
| 2 | 1 | oveq1i 7415 | . 2 ⊢ (1...𝑁) = ((0 + 1)...𝑁) |
| 3 | 0z 12599 | . . 3 ⊢ 0 ∈ ℤ | |
| 4 | fzp1ss 13592 | . . 3 ⊢ (0 ∈ ℤ → ((0 + 1)...𝑁) ⊆ (0...𝑁)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((0 + 1)...𝑁) ⊆ (0...𝑁) |
| 6 | 2, 5 | eqsstri 4005 | 1 ⊢ (1...𝑁) ⊆ (0...𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ⊆ wss 3926 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 ℤcz 12588 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: bcm1k 14333 bcpasc 14339 pfxfv0 14710 pfxfvlsw 14713 prmdvdsbc 16745 prmdiveq 16805 prmdivdiv 16806 efgsres 19719 efgredlemd 19725 efgredlem 19728 chfacfpmmulgsum2 22803 dvtaylp 26330 taylthlem2 26334 taylthlem2OLD 26335 pserdvlem2 26390 advlogexp 26616 wilthlem1 27030 basellem5 27047 pthdifv 29712 cyclnumvtx 29782 2clwwlk2clwwlk 30331 ballotlemodife 34530 ballotlemfrci 34560 ballotlemfrceq 34561 f1resfz0f1d 35136 pthhashvtx 35150 bcprod 35755 poimirlem1 37645 poimirlem2 37646 poimirlem6 37650 poimirlem14 37658 poimirlem15 37659 poimirlem31 37675 poimirlem32 37676 nnuzdisj 45382 stoweidlem26 46055 stoweidlem34 46063 etransclem24 46287 etransclem35 46298 stgredgiun 47970 stgrnbgr0 47976 isubgr3stgrlem7 47984 |
| Copyright terms: Public domain | W3C validator |