| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz1ssfz0 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fz1ssfz0 | ⊢ (1...𝑁) ⊆ (0...𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1e0p1 12698 | . . 3 ⊢ 1 = (0 + 1) | |
| 2 | 1 | oveq1i 7400 | . 2 ⊢ (1...𝑁) = ((0 + 1)...𝑁) |
| 3 | 0z 12547 | . . 3 ⊢ 0 ∈ ℤ | |
| 4 | fzp1ss 13543 | . . 3 ⊢ (0 ∈ ℤ → ((0 + 1)...𝑁) ⊆ (0...𝑁)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((0 + 1)...𝑁) ⊆ (0...𝑁) |
| 6 | 2, 5 | eqsstri 3996 | 1 ⊢ (1...𝑁) ⊆ (0...𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 ℤcz 12536 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: bcm1k 14287 bcpasc 14293 pfxfv0 14664 pfxfvlsw 14667 prmdvdsbc 16703 prmdiveq 16763 prmdivdiv 16764 efgsres 19675 efgredlemd 19681 efgredlem 19684 chfacfpmmulgsum2 22759 dvtaylp 26285 taylthlem2 26289 taylthlem2OLD 26290 pserdvlem2 26345 advlogexp 26571 wilthlem1 26985 basellem5 27002 pthdifv 29667 cyclnumvtx 29737 2clwwlk2clwwlk 30286 ballotlemodife 34496 ballotlemfrci 34526 ballotlemfrceq 34527 f1resfz0f1d 35108 pthhashvtx 35122 bcprod 35732 poimirlem1 37622 poimirlem2 37623 poimirlem6 37627 poimirlem14 37635 poimirlem15 37636 poimirlem31 37652 poimirlem32 37653 nnuzdisj 45358 stoweidlem26 46031 stoweidlem34 46039 etransclem24 46263 etransclem35 46274 stgredgiun 47961 stgrnbgr0 47967 isubgr3stgrlem7 47975 |
| Copyright terms: Public domain | W3C validator |