MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp Structured version   Visualization version   GIF version

Theorem wlkp 26866
Description: The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.)
Hypothesis
Ref Expression
wlkp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkp (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)

Proof of Theorem wlkp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkp.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2799 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2wlkprop 26861 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
43simp2d 1174 1 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  if-wif 1086   = wceq 1653  wcel 2157  wral 3089  wss 3769  {csn 4368  {cpr 4370   class class class wbr 4843  dom cdm 5312  wf 6097  cfv 6101  (class class class)co 6878  0cc0 10224  1c1 10225   + caddc 10227  ...cfz 12580  ..^cfzo 12720  chash 13370  Word cword 13534  Vtxcvtx 26231  iEdgciedg 26232  Walkscwlks 26846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-ifp 1087  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-hash 13371  df-word 13535  df-wlks 26849
This theorem is referenced by:  wlkpwrd  26867  wlklenvp1  26868  wlkn0  26870  wlkv0  26900  wlkpvtx  26908  wlkepvtx  26909  wlkres  26921  wlkreslemOLD  26922  wlkresOLD  26923  wlkp1lem1  26926  wlkp1lem4  26929  wlkp1  26934  lfgriswlk  26941  pthdivtx  26983  spthdifv  26987  spthdep  26988  pthdepisspth  26989  spthonepeq  27006  uhgrwkspthlem2  27008  crctcshlem4  27071  crctcshwlkn0  27072  wpthswwlks2on  27251  upgr3v3e3cycl  27524  upgr4cycl4dv4e  27529  eupthpf  27557  eupth2lems  27583  eucrct2eupthOLD  27591  eucrct2eupth  27592
  Copyright terms: Public domain W3C validator