MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp Structured version   Visualization version   GIF version

Theorem wlkp 27505
Description: The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.)
Hypothesis
Ref Expression
wlkp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkp (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)

Proof of Theorem wlkp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkp.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2758 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2wlkprop 27500 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
43simp2d 1140 1 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  if-wif 1058   = wceq 1538  wcel 2111  wral 3070  wss 3858  {csn 4522  {cpr 4524   class class class wbr 5032  dom cdm 5524  wf 6331  cfv 6335  (class class class)co 7150  0cc0 10575  1c1 10576   + caddc 10578  ...cfz 12939  ..^cfzo 13082  chash 13740  Word cword 13913  Vtxcvtx 26888  iEdgciedg 26889  Walkscwlks 27485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-wlks 27488
This theorem is referenced by:  wlkpwrd  27506  wlklenvp1  27507  wlkn0  27509  wlkv0  27539  wlkpvtx  27548  wlkepvtx  27549  wlkres  27559  wlkp1lem1  27562  wlkp1lem4  27565  wlkp1  27570  lfgriswlk  27577  pthdivtx  27617  spthdifv  27621  spthdep  27622  pthdepisspth  27623  spthonepeq  27640  uhgrwkspthlem2  27642  crctcshlem4  27705  crctcshwlkn0  27706  wpthswwlks2on  27846  upgr3v3e3cycl  28064  upgr4cycl4dv4e  28069  eupthpf  28097  eupth2lems  28122  eucrct2eupth  28129  pfxwlk  32601  pthhashvtx  32605  spthcycl  32607
  Copyright terms: Public domain W3C validator