| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp | Structured version Visualization version GIF version | ||
| Description: The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.) |
| Ref | Expression |
|---|---|
| wlkp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wlkp | ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2734 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | wlkprop 29523 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 4 | 3 | simp2d 1143 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 if-wif 1062 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3924 {csn 4599 {cpr 4601 class class class wbr 5116 dom cdm 5651 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 0cc0 11121 1c1 11122 + caddc 11124 ...cfz 13513 ..^cfzo 13660 ♯chash 14336 Word cword 14519 Vtxcvtx 28907 iEdgciedg 28908 Walkscwlks 29508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-fzo 13661 df-hash 14337 df-word 14520 df-wlks 29511 |
| This theorem is referenced by: wlkpwrd 29529 wlklenvp1 29530 wlkn0 29533 wlkv0 29563 wlkpvtx 29571 wlkepvtx 29572 wlkres 29582 wlkp1lem1 29585 wlkp1lem4 29588 wlkp1 29593 lfgriswlk 29600 pthdivtx 29641 dfpth2 29643 pthdifv 29644 spthdifv 29647 spthdep 29648 pthdepisspth 29649 spthonepeq 29666 uhgrwkspthlem2 29668 cyclnumvtx 29714 crctcshlem4 29734 crctcshwlkn0 29735 wpthswwlks2on 29875 upgr3v3e3cycl 30093 upgr4cycl4dv4e 30098 eupthpf 30126 eupth2lems 30151 eucrct2eupth 30158 pfxwlk 35067 pthhashvtx 35071 spthcycl 35072 cycl3grtri 47859 |
| Copyright terms: Public domain | W3C validator |