Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkp | Structured version Visualization version GIF version |
Description: The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.) |
Ref | Expression |
---|---|
wlkp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wlkp | ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2758 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | wlkprop 27500 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
4 | 3 | simp2d 1140 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 if-wif 1058 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⊆ wss 3858 {csn 4522 {cpr 4524 class class class wbr 5032 dom cdm 5524 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 ...cfz 12939 ..^cfzo 13082 ♯chash 13740 Word cword 13913 Vtxcvtx 26888 iEdgciedg 26889 Walkscwlks 27485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1059 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-wlks 27488 |
This theorem is referenced by: wlkpwrd 27506 wlklenvp1 27507 wlkn0 27509 wlkv0 27539 wlkpvtx 27548 wlkepvtx 27549 wlkres 27559 wlkp1lem1 27562 wlkp1lem4 27565 wlkp1 27570 lfgriswlk 27577 pthdivtx 27617 spthdifv 27621 spthdep 27622 pthdepisspth 27623 spthonepeq 27640 uhgrwkspthlem2 27642 crctcshlem4 27705 crctcshwlkn0 27706 wpthswwlks2on 27846 upgr3v3e3cycl 28064 upgr4cycl4dv4e 28069 eupthpf 28097 eupth2lems 28122 eucrct2eupth 28129 pfxwlk 32601 pthhashvtx 32605 spthcycl 32607 |
Copyright terms: Public domain | W3C validator |