MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp Structured version   Visualization version   GIF version

Theorem wlkp 27400
Description: The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.)
Hypothesis
Ref Expression
wlkp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkp (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)

Proof of Theorem wlkp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkp.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2823 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2wlkprop 27395 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
43simp2d 1139 1 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  if-wif 1057   = wceq 1537  wcel 2114  wral 3140  wss 3938  {csn 4569  {cpr 4571   class class class wbr 5068  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864  Vtxcvtx 26783  iEdgciedg 26784  Walkscwlks 27380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-wlks 27383
This theorem is referenced by:  wlkpwrd  27401  wlklenvp1  27402  wlkn0  27404  wlkv0  27434  wlkpvtx  27443  wlkepvtx  27444  wlkres  27454  wlkp1lem1  27457  wlkp1lem4  27460  wlkp1  27465  lfgriswlk  27472  pthdivtx  27512  spthdifv  27516  spthdep  27517  pthdepisspth  27518  spthonepeq  27535  uhgrwkspthlem2  27537  crctcshlem4  27600  crctcshwlkn0  27601  wpthswwlks2on  27742  upgr3v3e3cycl  27961  upgr4cycl4dv4e  27966  eupthpf  27994  eupth2lems  28019  eucrct2eupth  28026  pfxwlk  32372  pthhashvtx  32376  spthcycl  32378
  Copyright terms: Public domain W3C validator