| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flltp1 | Structured version Visualization version GIF version | ||
| Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| flltp1 | ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fllelt 13701 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
| 2 | 1 | simprd 495 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 ⌊cfl 13694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fl 13696 |
| This theorem is referenced by: fllep1 13705 fraclt1 13706 flge 13709 flflp1 13711 fladdz 13729 flhalf 13734 ceim1l 13751 expnbnd 14139 efcllem 15984 bitscmp 16349 1arith 16839 zcld 24730 lebnumii 24893 lmnn 25191 vitalilem4 25540 bposlem1 27223 lgsquadlem1 27319 chebbnd1lem2 27409 dchrisumlem3 27430 pntrlog2bndlem2 27517 pntrlog2bndlem4 27519 pntlemh 27538 ostth2lem3 27574 minvecolem3 30854 dya2ub 34281 dnibndlem5 36522 ltflcei 37654 cntotbnd 37842 aks6d1c2 42169 pellexlem5 42872 recnnltrp 45421 rpgtrecnn 45424 ioodvbdlimc1lem2 45976 ioodvbdlimc2lem 45978 fourierdlem4 46155 fourierdlem47 46197 fourierdlem65 46215 fllogbd 48598 nnpw2blen 48618 dignn0ldlem 48640 |
| Copyright terms: Public domain | W3C validator |