MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flltp1 Structured version   Visualization version   GIF version

Theorem flltp1 13708
Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.)
Assertion
Ref Expression
flltp1 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))

Proof of Theorem flltp1
StepHypRef Expression
1 fllelt 13705 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
21simprd 495 1 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113   class class class wbr 5095  cfv 6488  (class class class)co 7354  cr 11014  1c1 11016   + caddc 11018   < clt 11155  cle 11156  cfl 13698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fl 13700
This theorem is referenced by:  fllep1  13709  fraclt1  13710  flge  13713  flflp1  13715  fladdz  13733  flhalf  13738  ceim1l  13755  expnbnd  14143  efcllem  15988  bitscmp  16353  1arith  16843  zcld  24732  lebnumii  24895  lmnn  25193  vitalilem4  25542  bposlem1  27225  lgsquadlem1  27321  chebbnd1lem2  27411  dchrisumlem3  27432  pntrlog2bndlem2  27519  pntrlog2bndlem4  27521  pntlemh  27540  ostth2lem3  27576  minvecolem3  30860  dya2ub  34306  dnibndlem5  36549  ltflcei  37671  cntotbnd  37859  aks6d1c2  42246  pellexlem5  42953  recnnltrp  45502  rpgtrecnn  45505  ioodvbdlimc1lem2  46057  ioodvbdlimc2lem  46059  fourierdlem4  46236  fourierdlem47  46278  fourierdlem65  46296  fllogbd  48688  nnpw2blen  48708  dignn0ldlem  48730
  Copyright terms: Public domain W3C validator