Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flltp1 | Structured version Visualization version GIF version |
Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
flltp1 | ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fllelt 13623 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
2 | 1 | simprd 497 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5097 ‘cfv 6484 (class class class)co 7342 ℝcr 10976 1c1 10978 + caddc 10980 < clt 11115 ≤ cle 11116 ⌊cfl 13616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-sup 9304 df-inf 9305 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-n0 12340 df-z 12426 df-uz 12689 df-fl 13618 |
This theorem is referenced by: fllep1 13627 fraclt1 13628 flge 13631 flflp1 13633 fladdz 13651 flhalf 13656 ceim1l 13673 expnbnd 14053 efcllem 15887 bitscmp 16245 1arith 16726 zcld 24082 lebnumii 24235 lmnn 24533 vitalilem4 24881 bposlem1 26538 lgsquadlem1 26634 chebbnd1lem2 26724 dchrisumlem3 26745 pntrlog2bndlem2 26832 pntrlog2bndlem4 26834 pntlemh 26853 ostth2lem3 26889 minvecolem3 29526 dya2ub 32535 dnibndlem5 34799 ltflcei 35919 cntotbnd 36108 pellexlem5 40966 recnnltrp 43301 rpgtrecnn 43304 ioodvbdlimc1lem2 43859 ioodvbdlimc2lem 43861 fourierdlem4 44038 fourierdlem47 44080 fourierdlem65 44098 fllogbd 46322 nnpw2blen 46342 dignn0ldlem 46364 |
Copyright terms: Public domain | W3C validator |