| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flge0nn0 | Structured version Visualization version GIF version | ||
| Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
| Ref | Expression |
|---|---|
| flge0nn0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flcl 13764 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ) |
| 3 | 0z 12547 | . . . 4 ⊢ 0 ∈ ℤ | |
| 4 | flge 13774 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) |
| 6 | 5 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (⌊‘𝐴)) |
| 7 | elnn0z 12549 | . 2 ⊢ ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℤ ∧ 0 ≤ (⌊‘𝐴))) | |
| 8 | 2, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 ℝcr 11074 0cc0 11075 ≤ cle 11216 ℕ0cn0 12449 ℤcz 12536 ⌊cfl 13759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fl 13761 |
| This theorem is referenced by: fldivnn0 13791 expnbnd 14204 facavg 14273 o1fsum 15786 efcllem 16050 odzdvds 16773 prmreclem3 16896 1arith 16905 odmodnn0 19477 lebnumii 24872 lmnn 25170 vitalilem4 25519 mbfi1fseqlem1 25623 mbfi1fseqlem3 25625 mbfi1fseqlem5 25627 harmoniclbnd 26926 harmonicbnd4 26928 fsumharmonic 26929 ppiltx 27094 logfac2 27135 chpval2 27136 chpchtsum 27137 chpub 27138 logfaclbnd 27140 logfacbnd3 27141 logfacrlim 27142 bposlem1 27202 gausslemma2dlem0d 27277 lgsquadlem2 27299 chtppilimlem1 27391 vmadivsum 27400 rpvmasumlem 27405 dchrisumlema 27406 dchrisumlem1 27407 dchrisum0lem1b 27433 dchrisum0lem1 27434 dchrisum0lem2a 27435 dchrisum0lem3 27437 mudivsum 27448 mulogsumlem 27449 selberglem2 27464 selberg2lem 27468 pntrsumo1 27483 pntrlog2bndlem2 27496 pntrlog2bndlem4 27498 pntrlog2bndlem6a 27500 pntpbnd1 27504 pntpbnd2 27505 pntlemg 27516 pntlemj 27521 pntlemf 27523 ostth2lem2 27552 ostth2lem3 27553 minvecolem3 30812 minvecolem4 30816 itg2addnclem2 37673 irrapxlem4 42820 irrapxlem5 42821 recnnltrp 45380 rpgtrecnn 45383 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 fourierdlem47 46158 vonioolem1 46685 fllog2 48561 blennnelnn 48569 dignnld 48596 dignn0flhalf 48611 |
| Copyright terms: Public domain | W3C validator |