Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flge0nn0 | Structured version Visualization version GIF version |
Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
Ref | Expression |
---|---|
flge0nn0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flcl 13227 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
2 | 1 | adantr 484 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ) |
3 | 0z 12044 | . . . 4 ⊢ 0 ∈ ℤ | |
4 | flge 13237 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) | |
5 | 3, 4 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) |
6 | 5 | biimpa 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (⌊‘𝐴)) |
7 | elnn0z 12046 | . 2 ⊢ ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℤ ∧ 0 ≤ (⌊‘𝐴))) | |
8 | 2, 6, 7 | sylanbrc 586 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 class class class wbr 5036 ‘cfv 6340 ℝcr 10587 0cc0 10588 ≤ cle 10727 ℕ0cn0 11947 ℤcz 12033 ⌊cfl 13222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-fl 13224 |
This theorem is referenced by: fldivnn0 13254 expnbnd 13656 facavg 13724 o1fsum 15229 efcllem 15492 odzdvds 16201 prmreclem3 16323 1arith 16332 odmodnn0 18749 lebnumii 23681 lmnn 23977 vitalilem4 24325 mbfi1fseqlem1 24429 mbfi1fseqlem3 24431 mbfi1fseqlem5 24433 harmoniclbnd 25707 harmonicbnd4 25709 fsumharmonic 25710 ppiltx 25875 logfac2 25914 chpval2 25915 chpchtsum 25916 chpub 25917 logfaclbnd 25919 logfacbnd3 25920 logfacrlim 25921 bposlem1 25981 gausslemma2dlem0d 26056 lgsquadlem2 26078 chtppilimlem1 26170 vmadivsum 26179 rpvmasumlem 26184 dchrisumlema 26185 dchrisumlem1 26186 dchrisum0lem1b 26212 dchrisum0lem1 26213 dchrisum0lem2a 26214 dchrisum0lem3 26216 mudivsum 26227 mulogsumlem 26228 selberglem2 26243 selberg2lem 26247 pntrsumo1 26262 pntrlog2bndlem2 26275 pntrlog2bndlem4 26277 pntrlog2bndlem6a 26279 pntpbnd1 26283 pntpbnd2 26284 pntlemg 26295 pntlemj 26300 pntlemf 26302 ostth2lem2 26331 ostth2lem3 26332 minvecolem3 28772 minvecolem4 28776 itg2addnclem2 35424 irrapxlem4 40184 irrapxlem5 40185 recnnltrp 42422 rpgtrecnn 42426 ioodvbdlimc1lem2 42985 ioodvbdlimc2lem 42987 fourierdlem47 43206 vonioolem1 43730 fllog2 45406 blennnelnn 45414 dignnld 45441 dignn0flhalf 45456 |
Copyright terms: Public domain | W3C validator |