MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flge0nn0 Structured version   Visualization version   GIF version

Theorem flge0nn0 13789
Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.)
Assertion
Ref Expression
flge0nn0 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)

Proof of Theorem flge0nn0
StepHypRef Expression
1 flcl 13764 . . 3 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
21adantr 481 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ)
3 0z 12573 . . . 4 0 ∈ ℤ
4 flge 13774 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴)))
53, 4mpan2 689 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴)))
65biimpa 477 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (⌊‘𝐴))
7 elnn0z 12575 . 2 ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℤ ∧ 0 ≤ (⌊‘𝐴)))
82, 6, 7sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5148  cfv 6543  cr 11111  0cc0 11112  cle 11253  0cn0 12476  cz 12562  cfl 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fl 13761
This theorem is referenced by:  fldivnn0  13791  expnbnd  14199  facavg  14265  o1fsum  15763  efcllem  16025  odzdvds  16732  prmreclem3  16855  1arith  16864  odmodnn0  19449  lebnumii  24706  lmnn  25004  vitalilem4  25352  mbfi1fseqlem1  25457  mbfi1fseqlem3  25459  mbfi1fseqlem5  25461  harmoniclbnd  26737  harmonicbnd4  26739  fsumharmonic  26740  ppiltx  26905  logfac2  26944  chpval2  26945  chpchtsum  26946  chpub  26947  logfaclbnd  26949  logfacbnd3  26950  logfacrlim  26951  bposlem1  27011  gausslemma2dlem0d  27086  lgsquadlem2  27108  chtppilimlem1  27200  vmadivsum  27209  rpvmasumlem  27214  dchrisumlema  27215  dchrisumlem1  27216  dchrisum0lem1b  27242  dchrisum0lem1  27243  dchrisum0lem2a  27244  dchrisum0lem3  27246  mudivsum  27257  mulogsumlem  27258  selberglem2  27273  selberg2lem  27277  pntrsumo1  27292  pntrlog2bndlem2  27305  pntrlog2bndlem4  27307  pntrlog2bndlem6a  27309  pntpbnd1  27313  pntpbnd2  27314  pntlemg  27325  pntlemj  27330  pntlemf  27332  ostth2lem2  27361  ostth2lem3  27362  minvecolem3  30384  minvecolem4  30388  itg2addnclem2  36843  irrapxlem4  41865  irrapxlem5  41866  recnnltrp  44386  rpgtrecnn  44389  ioodvbdlimc1lem2  44947  ioodvbdlimc2lem  44949  fourierdlem47  45168  vonioolem1  45695  fllog2  47342  blennnelnn  47350  dignnld  47377  dignn0flhalf  47392
  Copyright terms: Public domain W3C validator