| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flge0nn0 | Structured version Visualization version GIF version | ||
| Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
| Ref | Expression |
|---|---|
| flge0nn0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flcl 13706 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ) |
| 3 | 0z 12490 | . . . 4 ⊢ 0 ∈ ℤ | |
| 4 | flge 13716 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) |
| 6 | 5 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (⌊‘𝐴)) |
| 7 | elnn0z 12492 | . 2 ⊢ ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℤ ∧ 0 ≤ (⌊‘𝐴))) | |
| 8 | 2, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 ℝcr 11016 0cc0 11017 ≤ cle 11158 ℕ0cn0 12392 ℤcz 12479 ⌊cfl 13701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fl 13703 |
| This theorem is referenced by: fldivnn0 13733 expnbnd 14146 facavg 14215 o1fsum 15727 efcllem 15991 odzdvds 16714 prmreclem3 16837 1arith 16846 odmodnn0 19460 lebnumii 24912 lmnn 25210 vitalilem4 25559 mbfi1fseqlem1 25663 mbfi1fseqlem3 25665 mbfi1fseqlem5 25667 harmoniclbnd 26966 harmonicbnd4 26968 fsumharmonic 26969 ppiltx 27134 logfac2 27175 chpval2 27176 chpchtsum 27177 chpub 27178 logfaclbnd 27180 logfacbnd3 27181 logfacrlim 27182 bposlem1 27242 gausslemma2dlem0d 27317 lgsquadlem2 27339 chtppilimlem1 27431 vmadivsum 27440 rpvmasumlem 27445 dchrisumlema 27446 dchrisumlem1 27447 dchrisum0lem1b 27473 dchrisum0lem1 27474 dchrisum0lem2a 27475 dchrisum0lem3 27477 mudivsum 27488 mulogsumlem 27489 selberglem2 27504 selberg2lem 27508 pntrsumo1 27523 pntrlog2bndlem2 27536 pntrlog2bndlem4 27538 pntrlog2bndlem6a 27540 pntpbnd1 27544 pntpbnd2 27545 pntlemg 27556 pntlemj 27561 pntlemf 27563 ostth2lem2 27592 ostth2lem3 27593 minvecolem3 30877 minvecolem4 30881 itg2addnclem2 37785 irrapxlem4 42982 irrapxlem5 42983 recnnltrp 45537 rpgtrecnn 45540 ioodvbdlimc1lem2 46092 ioodvbdlimc2lem 46094 fourierdlem47 46313 vonioolem1 46840 fllog2 48730 blennnelnn 48738 dignnld 48765 dignn0flhalf 48780 |
| Copyright terms: Public domain | W3C validator |