MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flge0nn0 Structured version   Visualization version   GIF version

Theorem flge0nn0 13758
Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.)
Assertion
Ref Expression
flge0nn0 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)

Proof of Theorem flge0nn0
StepHypRef Expression
1 flcl 13733 . . 3 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
21adantr 480 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ)
3 0z 12516 . . . 4 0 ∈ ℤ
4 flge 13743 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴)))
53, 4mpan2 691 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴)))
65biimpa 476 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (⌊‘𝐴))
7 elnn0z 12518 . 2 ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℤ ∧ 0 ≤ (⌊‘𝐴)))
82, 6, 7sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5102  cfv 6499  cr 11043  0cc0 11044  cle 11185  0cn0 12418  cz 12505  cfl 13728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fl 13730
This theorem is referenced by:  fldivnn0  13760  expnbnd  14173  facavg  14242  o1fsum  15755  efcllem  16019  odzdvds  16742  prmreclem3  16865  1arith  16874  odmodnn0  19446  lebnumii  24841  lmnn  25139  vitalilem4  25488  mbfi1fseqlem1  25592  mbfi1fseqlem3  25594  mbfi1fseqlem5  25596  harmoniclbnd  26895  harmonicbnd4  26897  fsumharmonic  26898  ppiltx  27063  logfac2  27104  chpval2  27105  chpchtsum  27106  chpub  27107  logfaclbnd  27109  logfacbnd3  27110  logfacrlim  27111  bposlem1  27171  gausslemma2dlem0d  27246  lgsquadlem2  27268  chtppilimlem1  27360  vmadivsum  27369  rpvmasumlem  27374  dchrisumlema  27375  dchrisumlem1  27376  dchrisum0lem1b  27402  dchrisum0lem1  27403  dchrisum0lem2a  27404  dchrisum0lem3  27406  mudivsum  27417  mulogsumlem  27418  selberglem2  27433  selberg2lem  27437  pntrsumo1  27452  pntrlog2bndlem2  27465  pntrlog2bndlem4  27467  pntrlog2bndlem6a  27469  pntpbnd1  27473  pntpbnd2  27474  pntlemg  27485  pntlemj  27490  pntlemf  27492  ostth2lem2  27521  ostth2lem3  27522  minvecolem3  30778  minvecolem4  30782  itg2addnclem2  37639  irrapxlem4  42786  irrapxlem5  42787  recnnltrp  45346  rpgtrecnn  45349  ioodvbdlimc1lem2  45903  ioodvbdlimc2lem  45905  fourierdlem47  46124  vonioolem1  46651  fllog2  48530  blennnelnn  48538  dignnld  48565  dignn0flhalf  48580
  Copyright terms: Public domain W3C validator