| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flge0nn0 | Structured version Visualization version GIF version | ||
| Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
| Ref | Expression |
|---|---|
| flge0nn0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flcl 13733 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ) |
| 3 | 0z 12516 | . . . 4 ⊢ 0 ∈ ℤ | |
| 4 | flge 13743 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) |
| 6 | 5 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (⌊‘𝐴)) |
| 7 | elnn0z 12518 | . 2 ⊢ ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℤ ∧ 0 ≤ (⌊‘𝐴))) | |
| 8 | 2, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 ℝcr 11043 0cc0 11044 ≤ cle 11185 ℕ0cn0 12418 ℤcz 12505 ⌊cfl 13728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fl 13730 |
| This theorem is referenced by: fldivnn0 13760 expnbnd 14173 facavg 14242 o1fsum 15755 efcllem 16019 odzdvds 16742 prmreclem3 16865 1arith 16874 odmodnn0 19446 lebnumii 24841 lmnn 25139 vitalilem4 25488 mbfi1fseqlem1 25592 mbfi1fseqlem3 25594 mbfi1fseqlem5 25596 harmoniclbnd 26895 harmonicbnd4 26897 fsumharmonic 26898 ppiltx 27063 logfac2 27104 chpval2 27105 chpchtsum 27106 chpub 27107 logfaclbnd 27109 logfacbnd3 27110 logfacrlim 27111 bposlem1 27171 gausslemma2dlem0d 27246 lgsquadlem2 27268 chtppilimlem1 27360 vmadivsum 27369 rpvmasumlem 27374 dchrisumlema 27375 dchrisumlem1 27376 dchrisum0lem1b 27402 dchrisum0lem1 27403 dchrisum0lem2a 27404 dchrisum0lem3 27406 mudivsum 27417 mulogsumlem 27418 selberglem2 27433 selberg2lem 27437 pntrsumo1 27452 pntrlog2bndlem2 27465 pntrlog2bndlem4 27467 pntrlog2bndlem6a 27469 pntpbnd1 27473 pntpbnd2 27474 pntlemg 27485 pntlemj 27490 pntlemf 27492 ostth2lem2 27521 ostth2lem3 27522 minvecolem3 30778 minvecolem4 30782 itg2addnclem2 37639 irrapxlem4 42786 irrapxlem5 42787 recnnltrp 45346 rpgtrecnn 45349 ioodvbdlimc1lem2 45903 ioodvbdlimc2lem 45905 fourierdlem47 46124 vonioolem1 46651 fllog2 48530 blennnelnn 48538 dignnld 48565 dignn0flhalf 48580 |
| Copyright terms: Public domain | W3C validator |