![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flge0nn0 | Structured version Visualization version GIF version |
Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
Ref | Expression |
---|---|
flge0nn0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flcl 13832 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ) |
3 | 0z 12622 | . . . 4 ⊢ 0 ∈ ℤ | |
4 | flge 13842 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) | |
5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) |
6 | 5 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (⌊‘𝐴)) |
7 | elnn0z 12624 | . 2 ⊢ ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℤ ∧ 0 ≤ (⌊‘𝐴))) | |
8 | 2, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 ℝcr 11152 0cc0 11153 ≤ cle 11294 ℕ0cn0 12524 ℤcz 12611 ⌊cfl 13827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fl 13829 |
This theorem is referenced by: fldivnn0 13859 expnbnd 14268 facavg 14337 o1fsum 15846 efcllem 16110 odzdvds 16829 prmreclem3 16952 1arith 16961 odmodnn0 19573 lebnumii 25012 lmnn 25311 vitalilem4 25660 mbfi1fseqlem1 25765 mbfi1fseqlem3 25767 mbfi1fseqlem5 25769 harmoniclbnd 27067 harmonicbnd4 27069 fsumharmonic 27070 ppiltx 27235 logfac2 27276 chpval2 27277 chpchtsum 27278 chpub 27279 logfaclbnd 27281 logfacbnd3 27282 logfacrlim 27283 bposlem1 27343 gausslemma2dlem0d 27418 lgsquadlem2 27440 chtppilimlem1 27532 vmadivsum 27541 rpvmasumlem 27546 dchrisumlema 27547 dchrisumlem1 27548 dchrisum0lem1b 27574 dchrisum0lem1 27575 dchrisum0lem2a 27576 dchrisum0lem3 27578 mudivsum 27589 mulogsumlem 27590 selberglem2 27605 selberg2lem 27609 pntrsumo1 27624 pntrlog2bndlem2 27637 pntrlog2bndlem4 27639 pntrlog2bndlem6a 27641 pntpbnd1 27645 pntpbnd2 27646 pntlemg 27657 pntlemj 27662 pntlemf 27664 ostth2lem2 27693 ostth2lem3 27694 minvecolem3 30905 minvecolem4 30909 itg2addnclem2 37659 irrapxlem4 42813 irrapxlem5 42814 recnnltrp 45327 rpgtrecnn 45330 ioodvbdlimc1lem2 45888 ioodvbdlimc2lem 45890 fourierdlem47 46109 vonioolem1 46636 fllog2 48418 blennnelnn 48426 dignnld 48453 dignn0flhalf 48468 |
Copyright terms: Public domain | W3C validator |