![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flge0nn0 | Structured version Visualization version GIF version |
Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
Ref | Expression |
---|---|
flge0nn0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flcl 12848 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
2 | 1 | adantr 473 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ) |
3 | 0z 11674 | . . . 4 ⊢ 0 ∈ ℤ | |
4 | flge 12858 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) | |
5 | 3, 4 | mpan2 683 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) |
6 | 5 | biimpa 469 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (⌊‘𝐴)) |
7 | elnn0z 11676 | . 2 ⊢ ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℤ ∧ 0 ≤ (⌊‘𝐴))) | |
8 | 2, 6, 7 | sylanbrc 579 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 class class class wbr 4842 ‘cfv 6100 ℝcr 10222 0cc0 10223 ≤ cle 10363 ℕ0cn0 11577 ℤcz 11663 ⌊cfl 12843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 ax-pre-sup 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-sup 8589 df-inf 8590 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-nn 11312 df-n0 11578 df-z 11664 df-uz 11928 df-fl 12845 |
This theorem is referenced by: fldivnn0 12875 expnbnd 13244 facavg 13338 o1fsum 14880 efcllem 15141 odzdvds 15830 prmreclem3 15952 1arith 15961 odmodnn0 18269 lebnumii 23090 lmnn 23386 vitalilem4 23716 mbfi1fseqlem1 23820 mbfi1fseqlem3 23822 mbfi1fseqlem5 23824 harmoniclbnd 25084 harmonicbnd4 25086 fsumharmonic 25087 ppiltx 25252 logfac2 25291 chpval2 25292 chpchtsum 25293 chpub 25294 logfaclbnd 25296 logfacbnd3 25297 logfacrlim 25298 bposlem1 25358 gausslemma2dlem0d 25433 lgsquadlem2 25455 chtppilimlem1 25511 vmadivsum 25520 rpvmasumlem 25525 dchrisumlema 25526 dchrisumlem1 25527 dchrisum0lem1b 25553 dchrisum0lem1 25554 dchrisum0lem2a 25555 dchrisum0lem3 25557 mudivsum 25568 mulogsumlem 25569 selberglem2 25584 selberg2lem 25588 pntrsumo1 25603 pntrlog2bndlem2 25616 pntrlog2bndlem4 25618 pntrlog2bndlem6a 25620 pntpbnd1 25624 pntpbnd2 25625 pntlemg 25636 pntlemj 25641 pntlemf 25643 ostth2lem2 25672 ostth2lem3 25673 minvecolem3 28250 minvecolem4 28254 itg2addnclem2 33943 irrapxlem4 38164 irrapxlem5 38165 recnnltrp 40326 rpgtrecnn 40330 ioodvbdlimc1lem2 40880 ioodvbdlimc2lem 40882 fourierdlem47 41102 vonioolem1 41629 fllog2 43150 blennnelnn 43158 dignnld 43185 dignn0flhalf 43200 |
Copyright terms: Public domain | W3C validator |