| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flge0nn0 | Structured version Visualization version GIF version | ||
| Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
| Ref | Expression |
|---|---|
| flge0nn0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flcl 13717 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ) |
| 3 | 0z 12500 | . . . 4 ⊢ 0 ∈ ℤ | |
| 4 | flge 13727 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (⌊‘𝐴))) |
| 6 | 5 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (⌊‘𝐴)) |
| 7 | elnn0z 12502 | . 2 ⊢ ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℤ ∧ 0 ≤ (⌊‘𝐴))) | |
| 8 | 2, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 ℝcr 11027 0cc0 11028 ≤ cle 11169 ℕ0cn0 12402 ℤcz 12489 ⌊cfl 13712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fl 13714 |
| This theorem is referenced by: fldivnn0 13744 expnbnd 14157 facavg 14226 o1fsum 15738 efcllem 16002 odzdvds 16725 prmreclem3 16848 1arith 16857 odmodnn0 19437 lebnumii 24881 lmnn 25179 vitalilem4 25528 mbfi1fseqlem1 25632 mbfi1fseqlem3 25634 mbfi1fseqlem5 25636 harmoniclbnd 26935 harmonicbnd4 26937 fsumharmonic 26938 ppiltx 27103 logfac2 27144 chpval2 27145 chpchtsum 27146 chpub 27147 logfaclbnd 27149 logfacbnd3 27150 logfacrlim 27151 bposlem1 27211 gausslemma2dlem0d 27286 lgsquadlem2 27308 chtppilimlem1 27400 vmadivsum 27409 rpvmasumlem 27414 dchrisumlema 27415 dchrisumlem1 27416 dchrisum0lem1b 27442 dchrisum0lem1 27443 dchrisum0lem2a 27444 dchrisum0lem3 27446 mudivsum 27457 mulogsumlem 27458 selberglem2 27473 selberg2lem 27477 pntrsumo1 27492 pntrlog2bndlem2 27505 pntrlog2bndlem4 27507 pntrlog2bndlem6a 27509 pntpbnd1 27513 pntpbnd2 27514 pntlemg 27525 pntlemj 27530 pntlemf 27532 ostth2lem2 27561 ostth2lem3 27562 minvecolem3 30838 minvecolem4 30842 itg2addnclem2 37654 irrapxlem4 42801 irrapxlem5 42802 recnnltrp 45360 rpgtrecnn 45363 ioodvbdlimc1lem2 45917 ioodvbdlimc2lem 45919 fourierdlem47 46138 vonioolem1 46665 fllog2 48557 blennnelnn 48565 dignnld 48592 dignn0flhalf 48607 |
| Copyright terms: Public domain | W3C validator |