![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvresioo | Structured version Visualization version GIF version |
Description: Restriction of a derivative to an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvresioo | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℝ D (𝐹 ↾ (𝐵(,)𝐶))) = ((ℝ D 𝐹) ↾ (𝐵(,)𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 11204 | . . . 4 ⊢ ℝ ⊆ ℂ | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → ℝ ⊆ ℂ) |
3 | simpr 483 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
4 | simpl 481 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℝ) | |
5 | ioossre 13431 | . . . 4 ⊢ (𝐵(,)𝐶) ⊆ ℝ | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → (𝐵(,)𝐶) ⊆ ℝ) |
7 | eqid 2726 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
8 | 7 | tgioo2 24805 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
9 | 7, 8 | dvres 25926 | . . 3 ⊢ (((ℝ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℝ ∧ (𝐵(,)𝐶) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐵(,)𝐶))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)𝐶)))) |
10 | 2, 3, 4, 6, 9 | syl22anc 837 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℝ D (𝐹 ↾ (𝐵(,)𝐶))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)𝐶)))) |
11 | ioontr 45163 | . . 3 ⊢ ((int‘(topGen‘ran (,)))‘(𝐵(,)𝐶)) = (𝐵(,)𝐶) | |
12 | 11 | reseq2i 5977 | . 2 ⊢ ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐵(,)𝐶))) = ((ℝ D 𝐹) ↾ (𝐵(,)𝐶)) |
13 | 10, 12 | eqtrdi 2782 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℝ D (𝐹 ↾ (𝐵(,)𝐶))) = ((ℝ D 𝐹) ↾ (𝐵(,)𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ⊆ wss 3947 ran crn 5674 ↾ cres 5675 ⟶wf 6540 ‘cfv 6544 (class class class)co 7414 ℂcc 11145 ℝcr 11146 (,)cioo 13370 TopOpenctopn 17429 topGenctg 17445 ℂfldccnfld 21337 intcnt 23007 D cdv 25878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-iin 4997 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9445 df-sup 9476 df-inf 9477 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-div 11911 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-7 12324 df-8 12325 df-9 12326 df-n0 12517 df-z 12603 df-dec 12722 df-uz 12867 df-q 12977 df-rp 13021 df-xneg 13138 df-xadd 13139 df-xmul 13140 df-ioo 13374 df-fz 13531 df-seq 14014 df-exp 14074 df-cj 15097 df-re 15098 df-im 15099 df-sqrt 15233 df-abs 15234 df-struct 17142 df-slot 17177 df-ndx 17189 df-base 17207 df-plusg 17272 df-mulr 17273 df-starv 17274 df-tset 17278 df-ple 17279 df-ds 17281 df-unif 17282 df-rest 17430 df-topn 17431 df-topgen 17451 df-psmet 21329 df-xmet 21330 df-met 21331 df-bl 21332 df-mopn 21333 df-cnfld 21338 df-top 22882 df-topon 22899 df-topsp 22921 df-bases 22935 df-cld 23009 df-ntr 23010 df-cls 23011 df-cnp 23218 df-xms 24312 df-ms 24313 df-limc 25881 df-dv 25882 |
This theorem is referenced by: fouriersw 45886 |
Copyright terms: Public domain | W3C validator |