| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ress1r | Structured version Visualization version GIF version | ||
| Description: 1r is unaffected by restriction. This is a bit more generic than subrg1 20497. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| Ref | Expression |
|---|---|
| ress1r.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| ress1r.b | ⊢ 𝐵 = (Base‘𝑅) |
| ress1r.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ress1r | ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 1 = (1r‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ress1r.s | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | ress1r.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | ressbas2 17149 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑆)) |
| 4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘𝑆)) |
| 5 | simp3 1138 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 6 | 2 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 7 | ssexg 5259 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
| 9 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 10 | 1, 9 | ressmulr 17211 | . . 3 ⊢ (𝐴 ∈ V → (.r‘𝑅) = (.r‘𝑆)) |
| 11 | 8, 10 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (.r‘𝑅) = (.r‘𝑆)) |
| 12 | simp2 1137 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 1 ∈ 𝐴) | |
| 13 | simpl1 1192 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ Ring) | |
| 14 | 5 | sselda 3929 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 15 | ress1r.1 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 16 | 2, 9, 15 | ringlidm 20187 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑥) = 𝑥) |
| 17 | 13, 14, 16 | syl2anc 584 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → ( 1 (.r‘𝑅)𝑥) = 𝑥) |
| 18 | 2, 9, 15 | ringridm 20188 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (𝑥(.r‘𝑅) 1 ) = 𝑥) |
| 19 | 13, 14, 18 | syl2anc 584 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥(.r‘𝑅) 1 ) = 𝑥) |
| 20 | 4, 11, 12, 17, 19 | ringurd 20103 | 1 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 1 = (1r‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 1rcur 20099 Ringcrg 20151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mgp 20059 df-ur 20100 df-ring 20153 |
| This theorem is referenced by: xrge0slmod 33313 ressply1evls1 33528 fldgenfldext 33681 fldextrspundgdvdslem 33693 fldextrspundgdvds 33694 ply1annnr 33716 rtelextdg2lem 33739 |
| Copyright terms: Public domain | W3C validator |