![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ress1r | Structured version Visualization version GIF version |
Description: 1r is unaffected by restriction. This is a bit more generic than subrg1 19281. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
Ref | Expression |
---|---|
ress1r.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
ress1r.b | ⊢ 𝐵 = (Base‘𝑅) |
ress1r.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ress1r | ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 1 = (1r‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ress1r.s | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | ress1r.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | ressbas2 16410 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑆)) |
4 | 3 | 3ad2ant3 1116 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘𝑆)) |
5 | simp3 1119 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
6 | 2 | fvexi 6511 | . . . 4 ⊢ 𝐵 ∈ V |
7 | ssexg 5080 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
8 | 5, 6, 7 | sylancl 578 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
9 | eqid 2773 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | 1, 9 | ressmulr 16480 | . . 3 ⊢ (𝐴 ∈ V → (.r‘𝑅) = (.r‘𝑆)) |
11 | 8, 10 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (.r‘𝑅) = (.r‘𝑆)) |
12 | simp2 1118 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 1 ∈ 𝐴) | |
13 | simpl1 1172 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ Ring) | |
14 | 5 | sselda 3853 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
15 | ress1r.1 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
16 | 2, 9, 15 | ringlidm 19057 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑥) = 𝑥) |
17 | 13, 14, 16 | syl2anc 576 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → ( 1 (.r‘𝑅)𝑥) = 𝑥) |
18 | 2, 9, 15 | ringridm 19058 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (𝑥(.r‘𝑅) 1 ) = 𝑥) |
19 | 13, 14, 18 | syl2anc 576 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥(.r‘𝑅) 1 ) = 𝑥) |
20 | 4, 11, 12, 17, 19 | rngurd 30569 | 1 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 1 = (1r‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 Vcvv 3410 ⊆ wss 3824 ‘cfv 6186 (class class class)co 6975 Basecbs 16338 ↾s cress 16339 .rcmulr 16421 1rcur 18987 Ringcrg 19033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-3 11503 df-ndx 16341 df-slot 16342 df-base 16344 df-sets 16345 df-ress 16346 df-plusg 16433 df-mulr 16434 df-0g 16570 df-mgm 17723 df-sgrp 17765 df-mnd 17776 df-mgp 18976 df-ur 18988 df-ring 19035 |
This theorem is referenced by: xrge0slmod 30629 |
Copyright terms: Public domain | W3C validator |