| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressmulgnn0d | Structured version Visualization version GIF version | ||
| Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| Ref | Expression |
|---|---|
| ressmulgnn0d.1 | ⊢ (𝜑 → (𝐺 ↾s 𝐴) = 𝐻) |
| ressmulgnn0d.2 | ⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
| ressmulgnn0d.3 | ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) |
| ressmulgnn0d.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| ressmulgnn0d.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| ressmulgnn0d | ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnn0d.1 | . . . . . 6 ⊢ (𝜑 → (𝐺 ↾s 𝐴) = 𝐻) | |
| 2 | 1 | fveq2d 6879 | . . . . 5 ⊢ (𝜑 → (.g‘(𝐺 ↾s 𝐴)) = (.g‘𝐻)) |
| 3 | 2 | oveqd 7420 | . . . 4 ⊢ (𝜑 → (𝑁(.g‘(𝐺 ↾s 𝐴))𝑋) = (𝑁(.g‘𝐻)𝑋)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(𝐺 ↾s 𝐴))𝑋) = (𝑁(.g‘𝐻)𝑋)) |
| 5 | eqid 2735 | . . . 4 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 6 | ressmulgnn0d.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ⊆ (Base‘𝐺)) |
| 8 | ressmulgnn0d.5 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐴) |
| 10 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 11 | 5, 7, 9, 10 | ressmulgnnd 19059 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(𝐺 ↾s 𝐴))𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 12 | 4, 11 | eqtr3d 2772 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 13 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑋 ∈ 𝐴) |
| 14 | eqid 2735 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 15 | 5, 14 | ressbas2 17257 | . . . . . . . . 9 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 16 | 6, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 18 | 13, 17 | eleqtrd 2836 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘(𝐺 ↾s 𝐴))) |
| 19 | eqid 2735 | . . . . . . 7 ⊢ (Base‘(𝐺 ↾s 𝐴)) = (Base‘(𝐺 ↾s 𝐴)) | |
| 20 | eqid 2735 | . . . . . . 7 ⊢ (0g‘(𝐺 ↾s 𝐴)) = (0g‘(𝐺 ↾s 𝐴)) | |
| 21 | eqid 2735 | . . . . . . 7 ⊢ (.g‘(𝐺 ↾s 𝐴)) = (.g‘(𝐺 ↾s 𝐴)) | |
| 22 | 19, 20, 21 | mulg0 19055 | . . . . . 6 ⊢ (𝑋 ∈ (Base‘(𝐺 ↾s 𝐴)) → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0g‘(𝐺 ↾s 𝐴))) |
| 23 | 18, 22 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0g‘(𝐺 ↾s 𝐴))) |
| 24 | 2 | oveqd 7420 | . . . . . 6 ⊢ (𝜑 → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0(.g‘𝐻)𝑋)) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0(.g‘𝐻)𝑋)) |
| 26 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝐺 ↾s 𝐴) = 𝐻) |
| 27 | 26 | fveq2d 6879 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0g‘(𝐺 ↾s 𝐴)) = (0g‘𝐻)) |
| 28 | ressmulgnn0d.2 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) | |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0g‘𝐺) = (0g‘𝐻)) |
| 30 | 27, 29 | eqtr4d 2773 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0g‘(𝐺 ↾s 𝐴)) = (0g‘𝐺)) |
| 31 | 23, 25, 30 | 3eqtr3d 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
| 32 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 33 | 32 | oveq1d 7418 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐻)𝑋)) |
| 34 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 ⊆ (Base‘𝐺)) |
| 35 | 34, 13 | sseldd 3959 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
| 36 | eqid 2735 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 37 | eqid 2735 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 38 | 14, 36, 37 | mulg0 19055 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → (0(.g‘𝐺)𝑋) = (0g‘𝐺)) |
| 39 | 35, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘𝐺)𝑋) = (0g‘𝐺)) |
| 40 | 31, 33, 39 | 3eqtr4d 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐺)𝑋)) |
| 41 | 32 | oveq1d 7418 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐺)𝑋) = (0(.g‘𝐺)𝑋)) |
| 42 | 40, 41 | eqtr4d 2773 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 43 | ressmulgnn0d.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 44 | elnn0 12501 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 45 | 43, 44 | sylib 218 | . 2 ⊢ (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 46 | 12, 42, 45 | mpjaodan 960 | 1 ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 0cc0 11127 ℕcn 12238 ℕ0cn0 12499 Basecbs 17226 ↾s cress 17249 0gc0g 17451 .gcmg 19048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-n0 12500 df-z 12587 df-uz 12851 df-seq 14018 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulg 19049 |
| This theorem is referenced by: ressply1evls1 33524 |
| Copyright terms: Public domain | W3C validator |