| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressmulgnn0d | Structured version Visualization version GIF version | ||
| Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| Ref | Expression |
|---|---|
| ressmulgnn0d.1 | ⊢ (𝜑 → (𝐺 ↾s 𝐴) = 𝐻) |
| ressmulgnn0d.2 | ⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
| ressmulgnn0d.3 | ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) |
| ressmulgnn0d.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| ressmulgnn0d.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| ressmulgnn0d | ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnn0d.1 | . . . . . 6 ⊢ (𝜑 → (𝐺 ↾s 𝐴) = 𝐻) | |
| 2 | 1 | fveq2d 6865 | . . . . 5 ⊢ (𝜑 → (.g‘(𝐺 ↾s 𝐴)) = (.g‘𝐻)) |
| 3 | 2 | oveqd 7407 | . . . 4 ⊢ (𝜑 → (𝑁(.g‘(𝐺 ↾s 𝐴))𝑋) = (𝑁(.g‘𝐻)𝑋)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(𝐺 ↾s 𝐴))𝑋) = (𝑁(.g‘𝐻)𝑋)) |
| 5 | eqid 2730 | . . . 4 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 6 | ressmulgnn0d.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ⊆ (Base‘𝐺)) |
| 8 | ressmulgnn0d.5 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐴) |
| 10 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 11 | 5, 7, 9, 10 | ressmulgnnd 19017 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(𝐺 ↾s 𝐴))𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 12 | 4, 11 | eqtr3d 2767 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 13 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑋 ∈ 𝐴) |
| 14 | eqid 2730 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 15 | 5, 14 | ressbas2 17215 | . . . . . . . . 9 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 16 | 6, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 18 | 13, 17 | eleqtrd 2831 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘(𝐺 ↾s 𝐴))) |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (Base‘(𝐺 ↾s 𝐴)) = (Base‘(𝐺 ↾s 𝐴)) | |
| 20 | eqid 2730 | . . . . . . 7 ⊢ (0g‘(𝐺 ↾s 𝐴)) = (0g‘(𝐺 ↾s 𝐴)) | |
| 21 | eqid 2730 | . . . . . . 7 ⊢ (.g‘(𝐺 ↾s 𝐴)) = (.g‘(𝐺 ↾s 𝐴)) | |
| 22 | 19, 20, 21 | mulg0 19013 | . . . . . 6 ⊢ (𝑋 ∈ (Base‘(𝐺 ↾s 𝐴)) → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0g‘(𝐺 ↾s 𝐴))) |
| 23 | 18, 22 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0g‘(𝐺 ↾s 𝐴))) |
| 24 | 2 | oveqd 7407 | . . . . . 6 ⊢ (𝜑 → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0(.g‘𝐻)𝑋)) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0(.g‘𝐻)𝑋)) |
| 26 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝐺 ↾s 𝐴) = 𝐻) |
| 27 | 26 | fveq2d 6865 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0g‘(𝐺 ↾s 𝐴)) = (0g‘𝐻)) |
| 28 | ressmulgnn0d.2 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) | |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0g‘𝐺) = (0g‘𝐻)) |
| 30 | 27, 29 | eqtr4d 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0g‘(𝐺 ↾s 𝐴)) = (0g‘𝐺)) |
| 31 | 23, 25, 30 | 3eqtr3d 2773 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
| 32 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 33 | 32 | oveq1d 7405 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐻)𝑋)) |
| 34 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 ⊆ (Base‘𝐺)) |
| 35 | 34, 13 | sseldd 3950 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
| 36 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 37 | eqid 2730 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 38 | 14, 36, 37 | mulg0 19013 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → (0(.g‘𝐺)𝑋) = (0g‘𝐺)) |
| 39 | 35, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘𝐺)𝑋) = (0g‘𝐺)) |
| 40 | 31, 33, 39 | 3eqtr4d 2775 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐺)𝑋)) |
| 41 | 32 | oveq1d 7405 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐺)𝑋) = (0(.g‘𝐺)𝑋)) |
| 42 | 40, 41 | eqtr4d 2768 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 43 | ressmulgnn0d.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 44 | elnn0 12451 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 45 | 43, 44 | sylib 218 | . 2 ⊢ (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 46 | 12, 42, 45 | mpjaodan 960 | 1 ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 ↾s cress 17207 0gc0g 17409 .gcmg 19006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulg 19007 |
| This theorem is referenced by: ressply1evls1 33541 |
| Copyright terms: Public domain | W3C validator |