| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressmulgnn0d | Structured version Visualization version GIF version | ||
| Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| Ref | Expression |
|---|---|
| ressmulgnn0d.1 | ⊢ (𝜑 → (𝐺 ↾s 𝐴) = 𝐻) |
| ressmulgnn0d.2 | ⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
| ressmulgnn0d.3 | ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) |
| ressmulgnn0d.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| ressmulgnn0d.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| ressmulgnn0d | ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnn0d.1 | . . . . . 6 ⊢ (𝜑 → (𝐺 ↾s 𝐴) = 𝐻) | |
| 2 | 1 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (.g‘(𝐺 ↾s 𝐴)) = (.g‘𝐻)) |
| 3 | 2 | oveqd 7386 | . . . 4 ⊢ (𝜑 → (𝑁(.g‘(𝐺 ↾s 𝐴))𝑋) = (𝑁(.g‘𝐻)𝑋)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(𝐺 ↾s 𝐴))𝑋) = (𝑁(.g‘𝐻)𝑋)) |
| 5 | eqid 2729 | . . . 4 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 6 | ressmulgnn0d.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ⊆ (Base‘𝐺)) |
| 8 | ressmulgnn0d.5 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐴) |
| 10 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 11 | 5, 7, 9, 10 | ressmulgnnd 18992 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(𝐺 ↾s 𝐴))𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 12 | 4, 11 | eqtr3d 2766 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 13 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑋 ∈ 𝐴) |
| 14 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 15 | 5, 14 | ressbas2 17184 | . . . . . . . . 9 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 16 | 6, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 18 | 13, 17 | eleqtrd 2830 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘(𝐺 ↾s 𝐴))) |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(𝐺 ↾s 𝐴)) = (Base‘(𝐺 ↾s 𝐴)) | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (0g‘(𝐺 ↾s 𝐴)) = (0g‘(𝐺 ↾s 𝐴)) | |
| 21 | eqid 2729 | . . . . . . 7 ⊢ (.g‘(𝐺 ↾s 𝐴)) = (.g‘(𝐺 ↾s 𝐴)) | |
| 22 | 19, 20, 21 | mulg0 18988 | . . . . . 6 ⊢ (𝑋 ∈ (Base‘(𝐺 ↾s 𝐴)) → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0g‘(𝐺 ↾s 𝐴))) |
| 23 | 18, 22 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0g‘(𝐺 ↾s 𝐴))) |
| 24 | 2 | oveqd 7386 | . . . . . 6 ⊢ (𝜑 → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0(.g‘𝐻)𝑋)) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘(𝐺 ↾s 𝐴))𝑋) = (0(.g‘𝐻)𝑋)) |
| 26 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝐺 ↾s 𝐴) = 𝐻) |
| 27 | 26 | fveq2d 6844 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0g‘(𝐺 ↾s 𝐴)) = (0g‘𝐻)) |
| 28 | ressmulgnn0d.2 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) | |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0g‘𝐺) = (0g‘𝐻)) |
| 30 | 27, 29 | eqtr4d 2767 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0g‘(𝐺 ↾s 𝐴)) = (0g‘𝐺)) |
| 31 | 23, 25, 30 | 3eqtr3d 2772 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
| 32 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 33 | 32 | oveq1d 7384 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐻)𝑋)) |
| 34 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 ⊆ (Base‘𝐺)) |
| 35 | 34, 13 | sseldd 3944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
| 36 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 37 | eqid 2729 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 38 | 14, 36, 37 | mulg0 18988 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → (0(.g‘𝐺)𝑋) = (0g‘𝐺)) |
| 39 | 35, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → (0(.g‘𝐺)𝑋) = (0g‘𝐺)) |
| 40 | 31, 33, 39 | 3eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐺)𝑋)) |
| 41 | 32 | oveq1d 7384 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐺)𝑋) = (0(.g‘𝐺)𝑋)) |
| 42 | 40, 41 | eqtr4d 2767 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 43 | ressmulgnn0d.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 44 | elnn0 12420 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 45 | 43, 44 | sylib 218 | . 2 ⊢ (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 46 | 12, 42, 45 | mpjaodan 960 | 1 ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 0gc0g 17378 .gcmg 18981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulg 18982 |
| This theorem is referenced by: ressply1evls1 33527 |
| Copyright terms: Public domain | W3C validator |