| Step | Hyp | Ref
| Expression |
| 1 | | ressply1evls1.8 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝐸)) |
| 2 | | eqid 2735 |
. . . . . 6
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 3 | 2 | subrgss 20530 |
. . . . 5
⊢ (𝑅 ∈ (SubRing‘𝐸) → 𝑅 ⊆ (Base‘𝐸)) |
| 4 | | ressply1evls1.1 |
. . . . . 6
⊢ 𝐺 = (𝐸 ↾s 𝑅) |
| 5 | 4, 2 | ressbas2 17257 |
. . . . 5
⊢ (𝑅 ⊆ (Base‘𝐸) → 𝑅 = (Base‘𝐺)) |
| 6 | 1, 3, 5 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝑅 = (Base‘𝐺)) |
| 7 | 1, 3 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ⊆ (Base‘𝐸)) |
| 8 | 6, 7 | eqsstrrd 3994 |
. . 3
⊢ (𝜑 → (Base‘𝐺) ⊆ (Base‘𝐸)) |
| 9 | 8 | resmptd 6027 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐸) ↦ (𝐸 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐸 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))))) |
| 10 | | ressply1evls1.2 |
. . . 4
⊢ 𝑂 = (𝐸 evalSub1 𝑆) |
| 11 | | ressply1evls1.4 |
. . . 4
⊢ 𝑃 = (Poly1‘𝐾) |
| 12 | | ressply1evls1.5 |
. . . 4
⊢ 𝐾 = (𝐸 ↾s 𝑆) |
| 13 | | ressply1evls1.6 |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
| 14 | | ressply1evls1.7 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ CRing) |
| 15 | | ressply1evls1.9 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝐺)) |
| 16 | 4 | subsubrg 20556 |
. . . . . . 7
⊢ (𝑅 ∈ (SubRing‘𝐸) → (𝑆 ∈ (SubRing‘𝐺) ↔ (𝑆 ∈ (SubRing‘𝐸) ∧ 𝑆 ⊆ 𝑅))) |
| 17 | 16 | biimpa 476 |
. . . . . 6
⊢ ((𝑅 ∈ (SubRing‘𝐸) ∧ 𝑆 ∈ (SubRing‘𝐺)) → (𝑆 ∈ (SubRing‘𝐸) ∧ 𝑆 ⊆ 𝑅)) |
| 18 | 1, 15, 17 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑆 ∈ (SubRing‘𝐸) ∧ 𝑆 ⊆ 𝑅)) |
| 19 | 18 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝐸)) |
| 20 | | ressply1evls1.10 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 21 | | eqid 2735 |
. . . 4
⊢
(.r‘𝐸) = (.r‘𝐸) |
| 22 | | eqid 2735 |
. . . 4
⊢
(.g‘(mulGrp‘𝐸)) =
(.g‘(mulGrp‘𝐸)) |
| 23 | | eqid 2735 |
. . . 4
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
| 24 | 10, 2, 11, 12, 13, 14, 19, 20, 21, 22, 23 | evls1fpws 22305 |
. . 3
⊢ (𝜑 → (𝑂‘𝐹) = (𝑥 ∈ (Base‘𝐸) ↦ (𝐸 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))))) |
| 25 | 24, 6 | reseq12d 5967 |
. 2
⊢ (𝜑 → ((𝑂‘𝐹) ↾ 𝑅) = ((𝑥 ∈ (Base‘𝐸) ↦ (𝐸 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) ↾ (Base‘𝐺))) |
| 26 | | ressply1evls1.3 |
. . . 4
⊢ 𝑄 = (𝐺 evalSub1 𝑆) |
| 27 | | eqid 2735 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 28 | | eqid 2735 |
. . . 4
⊢
(Poly1‘(𝐺 ↾s 𝑆)) = (Poly1‘(𝐺 ↾s 𝑆)) |
| 29 | | eqid 2735 |
. . . 4
⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) |
| 30 | | eqid 2735 |
. . . 4
⊢
(Base‘(Poly1‘(𝐺 ↾s 𝑆))) =
(Base‘(Poly1‘(𝐺 ↾s 𝑆))) |
| 31 | 4 | subrgcrng 20533 |
. . . . 5
⊢ ((𝐸 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝐸)) → 𝐺 ∈ CRing) |
| 32 | 14, 1, 31 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ CRing) |
| 33 | 18 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ 𝑅) |
| 34 | | ressabs 17267 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ (SubRing‘𝐸) ∧ 𝑆 ⊆ 𝑅) → ((𝐸 ↾s 𝑅) ↾s 𝑆) = (𝐸 ↾s 𝑆)) |
| 35 | 1, 33, 34 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸 ↾s 𝑅) ↾s 𝑆) = (𝐸 ↾s 𝑆)) |
| 36 | 4 | oveq1i 7413 |
. . . . . . . . . 10
⊢ (𝐺 ↾s 𝑆) = ((𝐸 ↾s 𝑅) ↾s 𝑆) |
| 37 | 35, 36, 12 | 3eqtr4g 2795 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 ↾s 𝑆) = 𝐾) |
| 38 | 37 | fveq2d 6879 |
. . . . . . . 8
⊢ (𝜑 →
(Poly1‘(𝐺
↾s 𝑆)) =
(Poly1‘𝐾)) |
| 39 | 38, 11 | eqtr4di 2788 |
. . . . . . 7
⊢ (𝜑 →
(Poly1‘(𝐺
↾s 𝑆)) =
𝑃) |
| 40 | 39 | fveq2d 6879 |
. . . . . 6
⊢ (𝜑 →
(Base‘(Poly1‘(𝐺 ↾s 𝑆))) = (Base‘𝑃)) |
| 41 | 40, 13 | eqtr4di 2788 |
. . . . 5
⊢ (𝜑 →
(Base‘(Poly1‘(𝐺 ↾s 𝑆))) = 𝐵) |
| 42 | 20, 41 | eleqtrrd 2837 |
. . . 4
⊢ (𝜑 → 𝐹 ∈
(Base‘(Poly1‘(𝐺 ↾s 𝑆)))) |
| 43 | | eqid 2735 |
. . . 4
⊢
(.r‘𝐺) = (.r‘𝐺) |
| 44 | | eqid 2735 |
. . . 4
⊢
(.g‘(mulGrp‘𝐺)) =
(.g‘(mulGrp‘𝐺)) |
| 45 | 26, 27, 28, 29, 30, 32, 15, 42, 43, 44, 23 | evls1fpws 22305 |
. . 3
⊢ (𝜑 → (𝑄‘𝐹) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐺 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)))))) |
| 46 | | eqid 2735 |
. . . . . 6
⊢
(+g‘𝐸) = (+g‘𝐸) |
| 47 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐸 ∈ CRing) |
| 48 | | nn0ex 12505 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 49 | 48 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → ℕ0 ∈
V) |
| 50 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑅 ⊆ (Base‘𝐸)) |
| 51 | 1 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ (SubRing‘𝐸)) |
| 52 | 33, 7 | sstrd 3969 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐸)) |
| 53 | 12, 2 | ressbas2 17257 |
. . . . . . . . . . . 12
⊢ (𝑆 ⊆ (Base‘𝐸) → 𝑆 = (Base‘𝐾)) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 = (Base‘𝐾)) |
| 55 | 54, 33 | eqsstrrd 3994 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝐾) ⊆ 𝑅) |
| 56 | 55 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
(Base‘𝐾) ⊆
𝑅) |
| 57 | 20 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝐹 ∈ 𝐵) |
| 58 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 59 | | eqid 2735 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 60 | 23, 13, 11, 59 | coe1fvalcl 22146 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝐹)‘𝑘) ∈ (Base‘𝐾)) |
| 61 | 57, 58, 60 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝐹)‘𝑘) ∈ (Base‘𝐾)) |
| 62 | 56, 61 | sseldd 3959 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝐹)‘𝑘) ∈ 𝑅) |
| 63 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(mulGrp‘𝐸) =
(mulGrp‘𝐸) |
| 64 | 4, 63 | mgpress 20108 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝐸)) → ((mulGrp‘𝐸) ↾s 𝑅) = (mulGrp‘𝐺)) |
| 65 | 47, 51, 64 | syl2an2r 685 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
((mulGrp‘𝐸)
↾s 𝑅) =
(mulGrp‘𝐺)) |
| 66 | 14 | crngringd 20204 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈ Ring) |
| 67 | | eqid 2735 |
. . . . . . . . . . . . . . . 16
⊢
(1r‘𝐸) = (1r‘𝐸) |
| 68 | 67 | subrg1cl 20538 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ (SubRing‘𝐸) →
(1r‘𝐸)
∈ 𝑅) |
| 69 | 1, 68 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1r‘𝐸) ∈ 𝑅) |
| 70 | 4, 2, 67 | ress1r 33175 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 ∈ Ring ∧
(1r‘𝐸)
∈ 𝑅 ∧ 𝑅 ⊆ (Base‘𝐸)) →
(1r‘𝐸) =
(1r‘𝐺)) |
| 71 | 66, 69, 7, 70 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1r‘𝐸) = (1r‘𝐺)) |
| 72 | 71 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
(1r‘𝐸) =
(1r‘𝐺)) |
| 73 | 63, 67 | ringidval 20141 |
. . . . . . . . . . . 12
⊢
(1r‘𝐸) = (0g‘(mulGrp‘𝐸)) |
| 74 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(mulGrp‘𝐺) =
(mulGrp‘𝐺) |
| 75 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(1r‘𝐺) = (1r‘𝐺) |
| 76 | 74, 75 | ringidval 20141 |
. . . . . . . . . . . 12
⊢
(1r‘𝐺) = (0g‘(mulGrp‘𝐺)) |
| 77 | 72, 73, 76 | 3eqtr3g 2793 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
(0g‘(mulGrp‘𝐸)) =
(0g‘(mulGrp‘𝐺))) |
| 78 | 63, 2 | mgpbas 20103 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐸) =
(Base‘(mulGrp‘𝐸)) |
| 79 | 7, 78 | sseqtrdi 3999 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ⊆ (Base‘(mulGrp‘𝐸))) |
| 80 | 79 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ⊆
(Base‘(mulGrp‘𝐸))) |
| 81 | 6 | eleq2d 2820 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ (Base‘𝐺))) |
| 82 | 81 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ 𝑅) |
| 83 | 82 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ 𝑅) |
| 84 | 65, 77, 80, 58, 83 | ressmulgnn0d 32985 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐺))𝑥) = (𝑘(.g‘(mulGrp‘𝐸))𝑥)) |
| 85 | 74, 27 | mgpbas 20103 |
. . . . . . . . . . 11
⊢
(Base‘𝐺) =
(Base‘(mulGrp‘𝐺)) |
| 86 | 4 | subrgring 20532 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ (SubRing‘𝐸) → 𝐺 ∈ Ring) |
| 87 | 74 | ringmgp 20197 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Ring →
(mulGrp‘𝐺) ∈
Mnd) |
| 88 | 1, 86, 87 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (mulGrp‘𝐺) ∈ Mnd) |
| 89 | 88 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
(mulGrp‘𝐺) ∈
Mnd) |
| 90 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ (Base‘𝐺)) |
| 91 | 85, 44, 89, 58, 90 | mulgnn0cld 19076 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐺))𝑥) ∈ (Base‘𝐺)) |
| 92 | 84, 91 | eqeltrrd 2835 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝑥) ∈ (Base‘𝐺)) |
| 93 | 51, 3, 5 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑅 = (Base‘𝐺)) |
| 94 | 92, 93 | eleqtrrd 2837 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝑥) ∈ 𝑅) |
| 95 | 21, 51, 62, 94 | subrgmcld 33174 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
(((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)) ∈ 𝑅) |
| 96 | 95 | fmpttd 7104 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))):ℕ0⟶𝑅) |
| 97 | | subrgsubg 20535 |
. . . . . . . 8
⊢ (𝑅 ∈ (SubRing‘𝐸) → 𝑅 ∈ (SubGrp‘𝐸)) |
| 98 | | eqid 2735 |
. . . . . . . . 9
⊢
(0g‘𝐸) = (0g‘𝐸) |
| 99 | 98 | subg0cl 19115 |
. . . . . . . 8
⊢ (𝑅 ∈ (SubGrp‘𝐸) →
(0g‘𝐸)
∈ 𝑅) |
| 100 | 1, 97, 99 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝐸) ∈ 𝑅) |
| 101 | 100 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (0g‘𝐸) ∈ 𝑅) |
| 102 | 14 | crnggrpd 20205 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ Grp) |
| 103 | 102 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → 𝐸 ∈ Grp) |
| 104 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → 𝑦 ∈ (Base‘𝐸)) |
| 105 | 2, 46, 98, 103, 104 | grplidd 18950 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → ((0g‘𝐸)(+g‘𝐸)𝑦) = 𝑦) |
| 106 | 2, 46, 98, 103, 104 | grpridd 18951 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → (𝑦(+g‘𝐸)(0g‘𝐸)) = 𝑦) |
| 107 | 105, 106 | jca 511 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → (((0g‘𝐸)(+g‘𝐸)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐸)(0g‘𝐸)) = 𝑦)) |
| 108 | 2, 46, 4, 47, 49, 50, 96, 101, 107 | gsumress 18658 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐸 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐺 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) |
| 109 | 4, 21 | ressmulr 17319 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ (SubRing‘𝐸) →
(.r‘𝐸) =
(.r‘𝐺)) |
| 110 | 1, 109 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (.r‘𝐸) = (.r‘𝐺)) |
| 111 | 110 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
(.r‘𝐸) =
(.r‘𝐺)) |
| 112 | 111 | oveqd 7420 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
(((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐺))𝑥)) = (((coe1‘𝐹)‘𝑘)(.r‘𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥))) |
| 113 | 84 | oveq2d 7419 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
(((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐺))𝑥)) = (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))) |
| 114 | 112, 113 | eqtr3d 2772 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) →
(((coe1‘𝐹)‘𝑘)(.r‘𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)) = (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))) |
| 115 | 114 | mpteq2dva 5214 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥))) = (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) |
| 116 | 115 | oveq2d 7419 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)))) = (𝐺 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) |
| 117 | 108, 116 | eqtr4d 2773 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐸 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐺 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥))))) |
| 118 | 117 | mpteq2dva 5214 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐺) ↦ (𝐸 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐺 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)))))) |
| 119 | 45, 118 | eqtr4d 2773 |
. 2
⊢ (𝜑 → (𝑄‘𝐹) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐸 Σg (𝑘 ∈ ℕ0
↦ (((coe1‘𝐹)‘𝑘)(.r‘𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))))) |
| 120 | 9, 25, 119 | 3eqtr4rd 2781 |
1
⊢ (𝜑 → (𝑄‘𝐹) = ((𝑂‘𝐹) ↾ 𝑅)) |