Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1evls1 Structured version   Visualization version   GIF version

Theorem ressply1evls1 33524
Description: Subring evaluation of a univariate polynomial is the same as the subring evaluation in the bigger ring. (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
ressply1evls1.1 𝐺 = (𝐸s 𝑅)
ressply1evls1.2 𝑂 = (𝐸 evalSub1 𝑆)
ressply1evls1.3 𝑄 = (𝐺 evalSub1 𝑆)
ressply1evls1.4 𝑃 = (Poly1𝐾)
ressply1evls1.5 𝐾 = (𝐸s 𝑆)
ressply1evls1.6 𝐵 = (Base‘𝑃)
ressply1evls1.7 (𝜑𝐸 ∈ CRing)
ressply1evls1.8 (𝜑𝑅 ∈ (SubRing‘𝐸))
ressply1evls1.9 (𝜑𝑆 ∈ (SubRing‘𝐺))
ressply1evls1.10 (𝜑𝐹𝐵)
Assertion
Ref Expression
ressply1evls1 (𝜑 → (𝑄𝐹) = ((𝑂𝐹) ↾ 𝑅))

Proof of Theorem ressply1evls1
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressply1evls1.8 . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝐸))
2 eqid 2735 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
32subrgss 20530 . . . . 5 (𝑅 ∈ (SubRing‘𝐸) → 𝑅 ⊆ (Base‘𝐸))
4 ressply1evls1.1 . . . . . 6 𝐺 = (𝐸s 𝑅)
54, 2ressbas2 17257 . . . . 5 (𝑅 ⊆ (Base‘𝐸) → 𝑅 = (Base‘𝐺))
61, 3, 53syl 18 . . . 4 (𝜑𝑅 = (Base‘𝐺))
71, 3syl 17 . . . 4 (𝜑𝑅 ⊆ (Base‘𝐸))
86, 7eqsstrrd 3994 . . 3 (𝜑 → (Base‘𝐺) ⊆ (Base‘𝐸))
98resmptd 6027 . 2 (𝜑 → ((𝑥 ∈ (Base‘𝐸) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
10 ressply1evls1.2 . . . 4 𝑂 = (𝐸 evalSub1 𝑆)
11 ressply1evls1.4 . . . 4 𝑃 = (Poly1𝐾)
12 ressply1evls1.5 . . . 4 𝐾 = (𝐸s 𝑆)
13 ressply1evls1.6 . . . 4 𝐵 = (Base‘𝑃)
14 ressply1evls1.7 . . . 4 (𝜑𝐸 ∈ CRing)
15 ressply1evls1.9 . . . . . 6 (𝜑𝑆 ∈ (SubRing‘𝐺))
164subsubrg 20556 . . . . . . 7 (𝑅 ∈ (SubRing‘𝐸) → (𝑆 ∈ (SubRing‘𝐺) ↔ (𝑆 ∈ (SubRing‘𝐸) ∧ 𝑆𝑅)))
1716biimpa 476 . . . . . 6 ((𝑅 ∈ (SubRing‘𝐸) ∧ 𝑆 ∈ (SubRing‘𝐺)) → (𝑆 ∈ (SubRing‘𝐸) ∧ 𝑆𝑅))
181, 15, 17syl2anc 584 . . . . 5 (𝜑 → (𝑆 ∈ (SubRing‘𝐸) ∧ 𝑆𝑅))
1918simpld 494 . . . 4 (𝜑𝑆 ∈ (SubRing‘𝐸))
20 ressply1evls1.10 . . . 4 (𝜑𝐹𝐵)
21 eqid 2735 . . . 4 (.r𝐸) = (.r𝐸)
22 eqid 2735 . . . 4 (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘𝐸))
23 eqid 2735 . . . 4 (coe1𝐹) = (coe1𝐹)
2410, 2, 11, 12, 13, 14, 19, 20, 21, 22, 23evls1fpws 22305 . . 3 (𝜑 → (𝑂𝐹) = (𝑥 ∈ (Base‘𝐸) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
2524, 6reseq12d 5967 . 2 (𝜑 → ((𝑂𝐹) ↾ 𝑅) = ((𝑥 ∈ (Base‘𝐸) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) ↾ (Base‘𝐺)))
26 ressply1evls1.3 . . . 4 𝑄 = (𝐺 evalSub1 𝑆)
27 eqid 2735 . . . 4 (Base‘𝐺) = (Base‘𝐺)
28 eqid 2735 . . . 4 (Poly1‘(𝐺s 𝑆)) = (Poly1‘(𝐺s 𝑆))
29 eqid 2735 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
30 eqid 2735 . . . 4 (Base‘(Poly1‘(𝐺s 𝑆))) = (Base‘(Poly1‘(𝐺s 𝑆)))
314subrgcrng 20533 . . . . 5 ((𝐸 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝐸)) → 𝐺 ∈ CRing)
3214, 1, 31syl2anc 584 . . . 4 (𝜑𝐺 ∈ CRing)
3318simprd 495 . . . . . . . . . . 11 (𝜑𝑆𝑅)
34 ressabs 17267 . . . . . . . . . . 11 ((𝑅 ∈ (SubRing‘𝐸) ∧ 𝑆𝑅) → ((𝐸s 𝑅) ↾s 𝑆) = (𝐸s 𝑆))
351, 33, 34syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐸s 𝑅) ↾s 𝑆) = (𝐸s 𝑆))
364oveq1i 7413 . . . . . . . . . 10 (𝐺s 𝑆) = ((𝐸s 𝑅) ↾s 𝑆)
3735, 36, 123eqtr4g 2795 . . . . . . . . 9 (𝜑 → (𝐺s 𝑆) = 𝐾)
3837fveq2d 6879 . . . . . . . 8 (𝜑 → (Poly1‘(𝐺s 𝑆)) = (Poly1𝐾))
3938, 11eqtr4di 2788 . . . . . . 7 (𝜑 → (Poly1‘(𝐺s 𝑆)) = 𝑃)
4039fveq2d 6879 . . . . . 6 (𝜑 → (Base‘(Poly1‘(𝐺s 𝑆))) = (Base‘𝑃))
4140, 13eqtr4di 2788 . . . . 5 (𝜑 → (Base‘(Poly1‘(𝐺s 𝑆))) = 𝐵)
4220, 41eleqtrrd 2837 . . . 4 (𝜑𝐹 ∈ (Base‘(Poly1‘(𝐺s 𝑆))))
43 eqid 2735 . . . 4 (.r𝐺) = (.r𝐺)
44 eqid 2735 . . . 4 (.g‘(mulGrp‘𝐺)) = (.g‘(mulGrp‘𝐺))
4526, 27, 28, 29, 30, 32, 15, 42, 43, 44, 23evls1fpws 22305 . . 3 (𝜑 → (𝑄𝐹) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥))))))
46 eqid 2735 . . . . . 6 (+g𝐸) = (+g𝐸)
4714adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝐸 ∈ CRing)
48 nn0ex 12505 . . . . . . 7 0 ∈ V
4948a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → ℕ0 ∈ V)
507adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑅 ⊆ (Base‘𝐸))
511ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ (SubRing‘𝐸))
5233, 7sstrd 3969 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ (Base‘𝐸))
5312, 2ressbas2 17257 . . . . . . . . . . . 12 (𝑆 ⊆ (Base‘𝐸) → 𝑆 = (Base‘𝐾))
5452, 53syl 17 . . . . . . . . . . 11 (𝜑𝑆 = (Base‘𝐾))
5554, 33eqsstrrd 3994 . . . . . . . . . 10 (𝜑 → (Base‘𝐾) ⊆ 𝑅)
5655ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (Base‘𝐾) ⊆ 𝑅)
5720ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝐹𝐵)
58 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
59 eqid 2735 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
6023, 13, 11, 59coe1fvalcl 22146 . . . . . . . . . 10 ((𝐹𝐵𝑘 ∈ ℕ0) → ((coe1𝐹)‘𝑘) ∈ (Base‘𝐾))
6157, 58, 60syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐹)‘𝑘) ∈ (Base‘𝐾))
6256, 61sseldd 3959 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐹)‘𝑘) ∈ 𝑅)
63 eqid 2735 . . . . . . . . . . . . 13 (mulGrp‘𝐸) = (mulGrp‘𝐸)
644, 63mgpress 20108 . . . . . . . . . . . 12 ((𝐸 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝐸)) → ((mulGrp‘𝐸) ↾s 𝑅) = (mulGrp‘𝐺))
6547, 51, 64syl2an2r 685 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → ((mulGrp‘𝐸) ↾s 𝑅) = (mulGrp‘𝐺))
6614crngringd 20204 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
67 eqid 2735 . . . . . . . . . . . . . . . 16 (1r𝐸) = (1r𝐸)
6867subrg1cl 20538 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝑅)
691, 68syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐸) ∈ 𝑅)
704, 2, 67ress1r 33175 . . . . . . . . . . . . . 14 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ 𝑅𝑅 ⊆ (Base‘𝐸)) → (1r𝐸) = (1r𝐺))
7166, 69, 7, 70syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (1r𝐸) = (1r𝐺))
7271ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (1r𝐸) = (1r𝐺))
7363, 67ringidval 20141 . . . . . . . . . . . 12 (1r𝐸) = (0g‘(mulGrp‘𝐸))
74 eqid 2735 . . . . . . . . . . . . 13 (mulGrp‘𝐺) = (mulGrp‘𝐺)
75 eqid 2735 . . . . . . . . . . . . 13 (1r𝐺) = (1r𝐺)
7674, 75ringidval 20141 . . . . . . . . . . . 12 (1r𝐺) = (0g‘(mulGrp‘𝐺))
7772, 73, 763eqtr3g 2793 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (0g‘(mulGrp‘𝐸)) = (0g‘(mulGrp‘𝐺)))
7863, 2mgpbas 20103 . . . . . . . . . . . . 13 (Base‘𝐸) = (Base‘(mulGrp‘𝐸))
797, 78sseqtrdi 3999 . . . . . . . . . . . 12 (𝜑𝑅 ⊆ (Base‘(mulGrp‘𝐸)))
8079ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ⊆ (Base‘(mulGrp‘𝐸)))
816eleq2d 2820 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑅𝑥 ∈ (Base‘𝐺)))
8281biimpar 477 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝑅)
8382adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝑅)
8465, 77, 80, 58, 83ressmulgnn0d 32985 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐺))𝑥) = (𝑘(.g‘(mulGrp‘𝐸))𝑥))
8574, 27mgpbas 20103 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘(mulGrp‘𝐺))
864subrgring 20532 . . . . . . . . . . . . 13 (𝑅 ∈ (SubRing‘𝐸) → 𝐺 ∈ Ring)
8774ringmgp 20197 . . . . . . . . . . . . 13 (𝐺 ∈ Ring → (mulGrp‘𝐺) ∈ Mnd)
881, 86, 873syl 18 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐺) ∈ Mnd)
8988ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝐺) ∈ Mnd)
90 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ (Base‘𝐺))
9185, 44, 89, 58, 90mulgnn0cld 19076 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐺))𝑥) ∈ (Base‘𝐺))
9284, 91eqeltrrd 2835 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝑥) ∈ (Base‘𝐺))
9351, 3, 53syl 18 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑅 = (Base‘𝐺))
9492, 93eleqtrrd 2837 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝑥) ∈ 𝑅)
9521, 51, 62, 94subrgmcld 33174 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)) ∈ 𝑅)
9695fmpttd 7104 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))):ℕ0𝑅)
97 subrgsubg 20535 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝐸) → 𝑅 ∈ (SubGrp‘𝐸))
98 eqid 2735 . . . . . . . . 9 (0g𝐸) = (0g𝐸)
9998subg0cl 19115 . . . . . . . 8 (𝑅 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝑅)
1001, 97, 993syl 18 . . . . . . 7 (𝜑 → (0g𝐸) ∈ 𝑅)
101100adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → (0g𝐸) ∈ 𝑅)
10214crnggrpd 20205 . . . . . . . . 9 (𝜑𝐸 ∈ Grp)
103102ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → 𝐸 ∈ Grp)
104 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → 𝑦 ∈ (Base‘𝐸))
1052, 46, 98, 103, 104grplidd 18950 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → ((0g𝐸)(+g𝐸)𝑦) = 𝑦)
1062, 46, 98, 103, 104grpridd 18951 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → (𝑦(+g𝐸)(0g𝐸)) = 𝑦)
107105, 106jca 511 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → (((0g𝐸)(+g𝐸)𝑦) = 𝑦 ∧ (𝑦(+g𝐸)(0g𝐸)) = 𝑦))
1082, 46, 4, 47, 49, 50, 96, 101, 107gsumress 18658 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))))
1094, 21ressmulr 17319 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐺))
1101, 109syl 17 . . . . . . . . . 10 (𝜑 → (.r𝐸) = (.r𝐺))
111110ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (.r𝐸) = (.r𝐺))
112111oveqd 7420 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐺))𝑥)) = (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)))
11384oveq2d 7419 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐺))𝑥)) = (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))
114112, 113eqtr3d 2772 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)) = (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))
115114mpteq2dva 5214 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))
116115oveq2d 7419 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)))) = (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))))
117108, 116eqtr4d 2773 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)))))
118117mpteq2dva 5214 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐺) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥))))))
11945, 118eqtr4d 2773 . 2 (𝜑 → (𝑄𝐹) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
1209, 25, 1193eqtr4rd 2781 1 (𝜑 → (𝑄𝐹) = ((𝑂𝐹) ↾ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  cmpt 5201  cres 5656  cfv 6530  (class class class)co 7403  0cn0 12499  Basecbs 17226  s cress 17249  +gcplusg 17269  .rcmulr 17270  0gc0g 17451   Σg cgsu 17452  Mndcmnd 18710  Grpcgrp 18914  .gcmg 19048  SubGrpcsubg 19101  mulGrpcmgp 20098  1rcur 20139  Ringcrg 20191  CRingccrg 20192  SubRingcsubrg 20527  Poly1cpl1 22110  coe1cco1 22111   evalSub1 ces1 22249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-rhm 20430  df-subrng 20504  df-subrg 20528  df-lmod 20817  df-lss 20887  df-lsp 20927  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evls1 22251  df-evl1 22252
This theorem is referenced by:  cos9thpiminply  33768
  Copyright terms: Public domain W3C validator