Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1evls1 Structured version   Visualization version   GIF version

Theorem ressply1evls1 33541
Description: Subring evaluation of a univariate polynomial is the same as the subring evaluation in the bigger ring. (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
ressply1evls1.1 𝐺 = (𝐸s 𝑅)
ressply1evls1.2 𝑂 = (𝐸 evalSub1 𝑆)
ressply1evls1.3 𝑄 = (𝐺 evalSub1 𝑆)
ressply1evls1.4 𝑃 = (Poly1𝐾)
ressply1evls1.5 𝐾 = (𝐸s 𝑆)
ressply1evls1.6 𝐵 = (Base‘𝑃)
ressply1evls1.7 (𝜑𝐸 ∈ CRing)
ressply1evls1.8 (𝜑𝑅 ∈ (SubRing‘𝐸))
ressply1evls1.9 (𝜑𝑆 ∈ (SubRing‘𝐺))
ressply1evls1.10 (𝜑𝐹𝐵)
Assertion
Ref Expression
ressply1evls1 (𝜑 → (𝑄𝐹) = ((𝑂𝐹) ↾ 𝑅))

Proof of Theorem ressply1evls1
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressply1evls1.8 . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝐸))
2 eqid 2730 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
32subrgss 20488 . . . . 5 (𝑅 ∈ (SubRing‘𝐸) → 𝑅 ⊆ (Base‘𝐸))
4 ressply1evls1.1 . . . . . 6 𝐺 = (𝐸s 𝑅)
54, 2ressbas2 17215 . . . . 5 (𝑅 ⊆ (Base‘𝐸) → 𝑅 = (Base‘𝐺))
61, 3, 53syl 18 . . . 4 (𝜑𝑅 = (Base‘𝐺))
71, 3syl 17 . . . 4 (𝜑𝑅 ⊆ (Base‘𝐸))
86, 7eqsstrrd 3985 . . 3 (𝜑 → (Base‘𝐺) ⊆ (Base‘𝐸))
98resmptd 6014 . 2 (𝜑 → ((𝑥 ∈ (Base‘𝐸) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
10 ressply1evls1.2 . . . 4 𝑂 = (𝐸 evalSub1 𝑆)
11 ressply1evls1.4 . . . 4 𝑃 = (Poly1𝐾)
12 ressply1evls1.5 . . . 4 𝐾 = (𝐸s 𝑆)
13 ressply1evls1.6 . . . 4 𝐵 = (Base‘𝑃)
14 ressply1evls1.7 . . . 4 (𝜑𝐸 ∈ CRing)
15 ressply1evls1.9 . . . . . 6 (𝜑𝑆 ∈ (SubRing‘𝐺))
164subsubrg 20514 . . . . . . 7 (𝑅 ∈ (SubRing‘𝐸) → (𝑆 ∈ (SubRing‘𝐺) ↔ (𝑆 ∈ (SubRing‘𝐸) ∧ 𝑆𝑅)))
1716biimpa 476 . . . . . 6 ((𝑅 ∈ (SubRing‘𝐸) ∧ 𝑆 ∈ (SubRing‘𝐺)) → (𝑆 ∈ (SubRing‘𝐸) ∧ 𝑆𝑅))
181, 15, 17syl2anc 584 . . . . 5 (𝜑 → (𝑆 ∈ (SubRing‘𝐸) ∧ 𝑆𝑅))
1918simpld 494 . . . 4 (𝜑𝑆 ∈ (SubRing‘𝐸))
20 ressply1evls1.10 . . . 4 (𝜑𝐹𝐵)
21 eqid 2730 . . . 4 (.r𝐸) = (.r𝐸)
22 eqid 2730 . . . 4 (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘𝐸))
23 eqid 2730 . . . 4 (coe1𝐹) = (coe1𝐹)
2410, 2, 11, 12, 13, 14, 19, 20, 21, 22, 23evls1fpws 22263 . . 3 (𝜑 → (𝑂𝐹) = (𝑥 ∈ (Base‘𝐸) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
2524, 6reseq12d 5954 . 2 (𝜑 → ((𝑂𝐹) ↾ 𝑅) = ((𝑥 ∈ (Base‘𝐸) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) ↾ (Base‘𝐺)))
26 ressply1evls1.3 . . . 4 𝑄 = (𝐺 evalSub1 𝑆)
27 eqid 2730 . . . 4 (Base‘𝐺) = (Base‘𝐺)
28 eqid 2730 . . . 4 (Poly1‘(𝐺s 𝑆)) = (Poly1‘(𝐺s 𝑆))
29 eqid 2730 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
30 eqid 2730 . . . 4 (Base‘(Poly1‘(𝐺s 𝑆))) = (Base‘(Poly1‘(𝐺s 𝑆)))
314subrgcrng 20491 . . . . 5 ((𝐸 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝐸)) → 𝐺 ∈ CRing)
3214, 1, 31syl2anc 584 . . . 4 (𝜑𝐺 ∈ CRing)
3318simprd 495 . . . . . . . . . . 11 (𝜑𝑆𝑅)
34 ressabs 17225 . . . . . . . . . . 11 ((𝑅 ∈ (SubRing‘𝐸) ∧ 𝑆𝑅) → ((𝐸s 𝑅) ↾s 𝑆) = (𝐸s 𝑆))
351, 33, 34syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐸s 𝑅) ↾s 𝑆) = (𝐸s 𝑆))
364oveq1i 7400 . . . . . . . . . 10 (𝐺s 𝑆) = ((𝐸s 𝑅) ↾s 𝑆)
3735, 36, 123eqtr4g 2790 . . . . . . . . 9 (𝜑 → (𝐺s 𝑆) = 𝐾)
3837fveq2d 6865 . . . . . . . 8 (𝜑 → (Poly1‘(𝐺s 𝑆)) = (Poly1𝐾))
3938, 11eqtr4di 2783 . . . . . . 7 (𝜑 → (Poly1‘(𝐺s 𝑆)) = 𝑃)
4039fveq2d 6865 . . . . . 6 (𝜑 → (Base‘(Poly1‘(𝐺s 𝑆))) = (Base‘𝑃))
4140, 13eqtr4di 2783 . . . . 5 (𝜑 → (Base‘(Poly1‘(𝐺s 𝑆))) = 𝐵)
4220, 41eleqtrrd 2832 . . . 4 (𝜑𝐹 ∈ (Base‘(Poly1‘(𝐺s 𝑆))))
43 eqid 2730 . . . 4 (.r𝐺) = (.r𝐺)
44 eqid 2730 . . . 4 (.g‘(mulGrp‘𝐺)) = (.g‘(mulGrp‘𝐺))
4526, 27, 28, 29, 30, 32, 15, 42, 43, 44, 23evls1fpws 22263 . . 3 (𝜑 → (𝑄𝐹) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥))))))
46 eqid 2730 . . . . . 6 (+g𝐸) = (+g𝐸)
4714adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝐸 ∈ CRing)
48 nn0ex 12455 . . . . . . 7 0 ∈ V
4948a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → ℕ0 ∈ V)
507adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑅 ⊆ (Base‘𝐸))
511ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ (SubRing‘𝐸))
5233, 7sstrd 3960 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ (Base‘𝐸))
5312, 2ressbas2 17215 . . . . . . . . . . . 12 (𝑆 ⊆ (Base‘𝐸) → 𝑆 = (Base‘𝐾))
5452, 53syl 17 . . . . . . . . . . 11 (𝜑𝑆 = (Base‘𝐾))
5554, 33eqsstrrd 3985 . . . . . . . . . 10 (𝜑 → (Base‘𝐾) ⊆ 𝑅)
5655ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (Base‘𝐾) ⊆ 𝑅)
5720ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝐹𝐵)
58 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
59 eqid 2730 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
6023, 13, 11, 59coe1fvalcl 22104 . . . . . . . . . 10 ((𝐹𝐵𝑘 ∈ ℕ0) → ((coe1𝐹)‘𝑘) ∈ (Base‘𝐾))
6157, 58, 60syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐹)‘𝑘) ∈ (Base‘𝐾))
6256, 61sseldd 3950 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → ((coe1𝐹)‘𝑘) ∈ 𝑅)
63 eqid 2730 . . . . . . . . . . . . 13 (mulGrp‘𝐸) = (mulGrp‘𝐸)
644, 63mgpress 20066 . . . . . . . . . . . 12 ((𝐸 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝐸)) → ((mulGrp‘𝐸) ↾s 𝑅) = (mulGrp‘𝐺))
6547, 51, 64syl2an2r 685 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → ((mulGrp‘𝐸) ↾s 𝑅) = (mulGrp‘𝐺))
6614crngringd 20162 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
67 eqid 2730 . . . . . . . . . . . . . . . 16 (1r𝐸) = (1r𝐸)
6867subrg1cl 20496 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝑅)
691, 68syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐸) ∈ 𝑅)
704, 2, 67ress1r 33192 . . . . . . . . . . . . . 14 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ 𝑅𝑅 ⊆ (Base‘𝐸)) → (1r𝐸) = (1r𝐺))
7166, 69, 7, 70syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (1r𝐸) = (1r𝐺))
7271ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (1r𝐸) = (1r𝐺))
7363, 67ringidval 20099 . . . . . . . . . . . 12 (1r𝐸) = (0g‘(mulGrp‘𝐸))
74 eqid 2730 . . . . . . . . . . . . 13 (mulGrp‘𝐺) = (mulGrp‘𝐺)
75 eqid 2730 . . . . . . . . . . . . 13 (1r𝐺) = (1r𝐺)
7674, 75ringidval 20099 . . . . . . . . . . . 12 (1r𝐺) = (0g‘(mulGrp‘𝐺))
7772, 73, 763eqtr3g 2788 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (0g‘(mulGrp‘𝐸)) = (0g‘(mulGrp‘𝐺)))
7863, 2mgpbas 20061 . . . . . . . . . . . . 13 (Base‘𝐸) = (Base‘(mulGrp‘𝐸))
797, 78sseqtrdi 3990 . . . . . . . . . . . 12 (𝜑𝑅 ⊆ (Base‘(mulGrp‘𝐸)))
8079ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ⊆ (Base‘(mulGrp‘𝐸)))
816eleq2d 2815 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑅𝑥 ∈ (Base‘𝐺)))
8281biimpar 477 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝑅)
8382adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑥𝑅)
8465, 77, 80, 58, 83ressmulgnn0d 32992 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐺))𝑥) = (𝑘(.g‘(mulGrp‘𝐸))𝑥))
8574, 27mgpbas 20061 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘(mulGrp‘𝐺))
864subrgring 20490 . . . . . . . . . . . . 13 (𝑅 ∈ (SubRing‘𝐸) → 𝐺 ∈ Ring)
8774ringmgp 20155 . . . . . . . . . . . . 13 (𝐺 ∈ Ring → (mulGrp‘𝐺) ∈ Mnd)
881, 86, 873syl 18 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐺) ∈ Mnd)
8988ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝐺) ∈ Mnd)
90 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ (Base‘𝐺))
9185, 44, 89, 58, 90mulgnn0cld 19034 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐺))𝑥) ∈ (Base‘𝐺))
9284, 91eqeltrrd 2830 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝑥) ∈ (Base‘𝐺))
9351, 3, 53syl 18 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → 𝑅 = (Base‘𝐺))
9492, 93eleqtrrd 2832 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝐸))𝑥) ∈ 𝑅)
9521, 51, 62, 94subrgmcld 33191 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)) ∈ 𝑅)
9695fmpttd 7090 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))):ℕ0𝑅)
97 subrgsubg 20493 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝐸) → 𝑅 ∈ (SubGrp‘𝐸))
98 eqid 2730 . . . . . . . . 9 (0g𝐸) = (0g𝐸)
9998subg0cl 19073 . . . . . . . 8 (𝑅 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝑅)
1001, 97, 993syl 18 . . . . . . 7 (𝜑 → (0g𝐸) ∈ 𝑅)
101100adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → (0g𝐸) ∈ 𝑅)
10214crnggrpd 20163 . . . . . . . . 9 (𝜑𝐸 ∈ Grp)
103102ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → 𝐸 ∈ Grp)
104 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → 𝑦 ∈ (Base‘𝐸))
1052, 46, 98, 103, 104grplidd 18908 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → ((0g𝐸)(+g𝐸)𝑦) = 𝑦)
1062, 46, 98, 103, 104grpridd 18909 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → (𝑦(+g𝐸)(0g𝐸)) = 𝑦)
107105, 106jca 511 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐸)) → (((0g𝐸)(+g𝐸)𝑦) = 𝑦 ∧ (𝑦(+g𝐸)(0g𝐸)) = 𝑦))
1082, 46, 4, 47, 49, 50, 96, 101, 107gsumress 18616 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))))
1094, 21ressmulr 17277 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐺))
1101, 109syl 17 . . . . . . . . . 10 (𝜑 → (.r𝐸) = (.r𝐺))
111110ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (.r𝐸) = (.r𝐺))
112111oveqd 7407 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐺))𝑥)) = (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)))
11384oveq2d 7406 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐺))𝑥)) = (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))
114112, 113eqtr3d 2767 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)) = (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))
115114mpteq2dva 5203 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))
116115oveq2d 7406 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)))) = (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))))
117108, 116eqtr4d 2768 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥)))) = (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥)))))
118117mpteq2dva 5203 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐺) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐺)(𝑘(.g‘(mulGrp‘𝐺))𝑥))))))
11945, 118eqtr4d 2768 . 2 (𝜑 → (𝑄𝐹) = (𝑥 ∈ (Base‘𝐺) ↦ (𝐸 Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝐹)‘𝑘)(.r𝐸)(𝑘(.g‘(mulGrp‘𝐸))𝑥))))))
1209, 25, 1193eqtr4rd 2776 1 (𝜑 → (𝑄𝐹) = ((𝑂𝐹) ↾ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  cmpt 5191  cres 5643  cfv 6514  (class class class)co 7390  0cn0 12449  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  Grpcgrp 18872  .gcmg 19006  SubGrpcsubg 19059  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150  SubRingcsubrg 20485  Poly1cpl1 22068  coe1cco1 22069   evalSub1 ces1 22207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210
This theorem is referenced by:  cos9thpiminply  33785
  Copyright terms: Public domain W3C validator