![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subgmulgcld | Structured version Visualization version GIF version |
Description: Closure of the group multiple within a subgroup. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
Ref | Expression |
---|---|
subgmulgcld.b | ⊢ 𝐵 = (Base‘𝑅) |
subgmulgcld.x | ⊢ · = (.g‘𝑅) |
subgmulgcld.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
subgmulgcld.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
subgmulgcld.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝑅)) |
subgmulgcld.z | ⊢ (𝜑 → 𝑍 ∈ ℤ) |
Ref | Expression |
---|---|
subgmulgcld | ⊢ (𝜑 → (𝑍 · 𝐴) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (Base‘(𝑅 ↾s 𝑆)) = (Base‘(𝑅 ↾s 𝑆)) | |
2 | eqid 2734 | . . 3 ⊢ (.g‘(𝑅 ↾s 𝑆)) = (.g‘(𝑅 ↾s 𝑆)) | |
3 | subgmulgcld.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝑅)) | |
4 | eqid 2734 | . . . . 5 ⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) | |
5 | 4 | subggrp 19159 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ↾s 𝑆) ∈ Grp) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ Grp) |
7 | subgmulgcld.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ ℤ) | |
8 | subgmulgcld.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
9 | subgmulgcld.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
10 | 9 | subgss 19157 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → 𝑆 ⊆ 𝐵) |
11 | 4, 9 | ressbas2 17282 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘(𝑅 ↾s 𝑆))) |
12 | 3, 10, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑆 = (Base‘(𝑅 ↾s 𝑆))) |
13 | 8, 12 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘(𝑅 ↾s 𝑆))) |
14 | 1, 2, 6, 7, 13 | mulgcld 19126 | . 2 ⊢ (𝜑 → (𝑍(.g‘(𝑅 ↾s 𝑆))𝐴) ∈ (Base‘(𝑅 ↾s 𝑆))) |
15 | subgmulgcld.x | . . . 4 ⊢ · = (.g‘𝑅) | |
16 | 15, 4, 2 | subgmulg 19170 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑍 ∈ ℤ ∧ 𝐴 ∈ 𝑆) → (𝑍 · 𝐴) = (𝑍(.g‘(𝑅 ↾s 𝑆))𝐴)) |
17 | 3, 7, 8, 16 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑍 · 𝐴) = (𝑍(.g‘(𝑅 ↾s 𝑆))𝐴)) |
18 | 14, 17, 12 | 3eltr4d 2853 | 1 ⊢ (𝜑 → (𝑍 · 𝐴) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 ℤcz 12610 Basecbs 17244 ↾s cress 17273 Grpcgrp 18963 .gcmg 19097 SubGrpcsubg 19150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-seq 14039 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-mulg 19098 df-subg 19153 |
This theorem is referenced by: elrgspnlem4 33234 |
Copyright terms: Public domain | W3C validator |