MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngisomring1 Structured version   Visualization version   GIF version

Theorem rngisomring1 20387
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the ring unity of the second ring is the function value of the ring unity of the first ring for the isomorphism. (Contributed by AV, 16-Mar-2025.)
Assertion
Ref Expression
rngisomring1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r𝑆) = (𝐹‘(1r𝑅)))

Proof of Theorem rngisomring1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (1r𝑅) = (1r𝑅)
2 eqid 2731 . . . 4 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2731 . . . 4 (.r𝑆) = (.r𝑆)
41, 2, 3rngisom1 20385 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥))
5 eqidd 2732 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (Base‘𝑆) = (Base‘𝑆))
6 eqidd 2732 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (.r𝑆) = (.r𝑆))
7 eqid 2731 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
87, 2rngimf1o 20373 . . . . . . . 8 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
9 f1of 6763 . . . . . . . 8 (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
108, 9syl 17 . . . . . . 7 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
11103ad2ant3 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
127, 1ringidcl 20184 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
13123ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r𝑅) ∈ (Base‘𝑅))
1411, 13ffvelcdmd 7018 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘(1r𝑅)) ∈ (Base‘𝑆))
1514adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝐹‘(1r𝑅)) ∈ (Base‘𝑆))
16 oveq2 7354 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹‘(1r𝑅))(.r𝑆)𝑥) = ((𝐹‘(1r𝑅))(.r𝑆)𝑦))
17 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
1816, 17eqeq12d 2747 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ↔ ((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦))
19 oveq1 7353 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = (𝑦(.r𝑆)(𝐹‘(1r𝑅))))
2019, 17eqeq12d 2747 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥 ↔ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦))
2118, 20anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥) ↔ (((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)))
2221rspccv 3574 . . . . . . 7 (∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥) → (𝑦 ∈ (Base‘𝑆) → (((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)))
2322adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → (((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)))
24 simpl 482 . . . . . 6 ((((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦) → ((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦)
2523, 24syl6 35 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → ((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦))
2625imp 406 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦)
27 simpr 484 . . . . . 6 ((((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦) → (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)
2823, 27syl6 35 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦))
2928imp 406 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)
305, 6, 15, 26, 29ringurd 20104 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝐹‘(1r𝑅)) = (1r𝑆))
314, 30mpdan 687 . 2 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘(1r𝑅)) = (1r𝑆))
3231eqcomd 2737 1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r𝑆) = (𝐹‘(1r𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  Rngcrng 20071  1rcur 20100  Ringcrg 20152   RngIso crngim 20354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-mgmhm 18600  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-ghm 19126  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-rnghm 20355  df-rngim 20356
This theorem is referenced by:  rngqiprngu  21256
  Copyright terms: Public domain W3C validator