MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngisomring1 Structured version   Visualization version   GIF version

Theorem rngisomring1 20371
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the ring unity of the second ring is the function value of the ring unity of the first ring for the isomorphism. (Contributed by AV, 16-Mar-2025.)
Assertion
Ref Expression
rngisomring1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r𝑆) = (𝐹‘(1r𝑅)))

Proof of Theorem rngisomring1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (1r𝑅) = (1r𝑅)
2 eqid 2729 . . . 4 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2729 . . . 4 (.r𝑆) = (.r𝑆)
41, 2, 3rngisom1 20369 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥))
5 eqidd 2730 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (Base‘𝑆) = (Base‘𝑆))
6 eqidd 2730 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (.r𝑆) = (.r𝑆))
7 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
87, 2rngimf1o 20357 . . . . . . . 8 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
9 f1of 6768 . . . . . . . 8 (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
108, 9syl 17 . . . . . . 7 (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
11103ad2ant3 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
127, 1ringidcl 20168 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
13123ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r𝑅) ∈ (Base‘𝑅))
1411, 13ffvelcdmd 7023 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘(1r𝑅)) ∈ (Base‘𝑆))
1514adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝐹‘(1r𝑅)) ∈ (Base‘𝑆))
16 oveq2 7361 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹‘(1r𝑅))(.r𝑆)𝑥) = ((𝐹‘(1r𝑅))(.r𝑆)𝑦))
17 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
1816, 17eqeq12d 2745 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ↔ ((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦))
19 oveq1 7360 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = (𝑦(.r𝑆)(𝐹‘(1r𝑅))))
2019, 17eqeq12d 2745 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥 ↔ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦))
2118, 20anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥) ↔ (((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)))
2221rspccv 3576 . . . . . . 7 (∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥) → (𝑦 ∈ (Base‘𝑆) → (((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)))
2322adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → (((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)))
24 simpl 482 . . . . . 6 ((((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦) → ((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦)
2523, 24syl6 35 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → ((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦))
2625imp 406 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦)
27 simpr 484 . . . . . 6 ((((𝐹‘(1r𝑅))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦) → (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)
2823, 27syl6 35 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦))
2928imp 406 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦(.r𝑆)(𝐹‘(1r𝑅))) = 𝑦)
305, 6, 15, 26, 29ringurd 20088 . . 3 (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r𝑅))(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(𝐹‘(1r𝑅))) = 𝑥)) → (𝐹‘(1r𝑅)) = (1r𝑆))
314, 30mpdan 687 . 2 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘(1r𝑅)) = (1r𝑆))
3231eqcomd 2735 1 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r𝑆) = (𝐹‘(1r𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  Rngcrng 20055  1rcur 20084  Ringcrg 20136   RngIso crngim 20338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-mgmhm 18584  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-ghm 19110  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-rnghm 20339  df-rngim 20340
This theorem is referenced by:  rngqiprngu  21243
  Copyright terms: Public domain W3C validator