| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . . . 4
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 2 |  | eqid 2737 | . . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 3 |  | eqid 2737 | . . . 4
⊢
(.r‘𝑆) = (.r‘𝑆) | 
| 4 | 1, 2, 3 | rngisom1 20466 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) | 
| 5 |  | eqidd 2738 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (Base‘𝑆) = (Base‘𝑆)) | 
| 6 |  | eqidd 2738 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (.r‘𝑆) = (.r‘𝑆)) | 
| 7 |  | eqid 2737 | . . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 8 | 7, 2 | rngimf1o 20454 | . . . . . . . 8
⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) | 
| 9 |  | f1of 6848 | . . . . . . . 8
⊢ (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) | 
| 10 | 8, 9 | syl 17 | . . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) | 
| 11 | 10 | 3ad2ant3 1136 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) | 
| 12 | 7, 1 | ringidcl 20262 | . . . . . . 7
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) | 
| 13 | 12 | 3ad2ant1 1134 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r‘𝑅) ∈ (Base‘𝑅)) | 
| 14 | 11, 13 | ffvelcdmd 7105 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘(1r‘𝑅)) ∈ (Base‘𝑆)) | 
| 15 | 14 | adantr 480 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝐹‘(1r‘𝑅)) ∈ (Base‘𝑆)) | 
| 16 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦)) | 
| 17 |  | id 22 | . . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | 
| 18 | 16, 17 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ↔ ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦)) | 
| 19 |  | oveq1 7438 | . . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅)))) | 
| 20 | 19, 17 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥 ↔ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦)) | 
| 21 | 18, 20 | anbi12d 632 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → ((((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥) ↔ (((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦))) | 
| 22 | 21 | rspccv 3619 | . . . . . . 7
⊢
(∀𝑥 ∈
(Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥) → (𝑦 ∈ (Base‘𝑆) → (((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦))) | 
| 23 | 22 | adantl 481 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → (((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦))) | 
| 24 |  | simpl 482 | . . . . . 6
⊢ ((((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦) → ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦) | 
| 25 | 23, 24 | syl6 35 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦)) | 
| 26 | 25 | imp 406 | . . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦) | 
| 27 |  | simpr 484 | . . . . . 6
⊢ ((((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦) → (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦) | 
| 28 | 23, 27 | syl6 35 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦)) | 
| 29 | 28 | imp 406 | . . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦) | 
| 30 | 5, 6, 15, 26, 29 | ringurd 20182 | . . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) | 
| 31 | 4, 30 | mpdan 687 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) | 
| 32 | 31 | eqcomd 2743 | 1
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → (1r‘𝑆) = (𝐹‘(1r‘𝑅))) |