Step | Hyp | Ref
| Expression |
1 | | eqid 2733 |
. . . 4
⊢
(1r‘𝑅) = (1r‘𝑅) |
2 | | eqid 2733 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
3 | | eqid 2733 |
. . . 4
⊢
(.r‘𝑆) = (.r‘𝑆) |
4 | 1, 2, 3 | rngisom1 46718 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) → ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) |
5 | | eqidd 2734 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (Base‘𝑆) = (Base‘𝑆)) |
6 | | eqidd 2734 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (.r‘𝑆) = (.r‘𝑆)) |
7 | | eqid 2733 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
8 | 7, 2 | rngimf1o 46703 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) |
9 | | f1of 6834 |
. . . . . . . 8
⊢ (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
11 | 10 | 3ad2ant3 1136 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
12 | 7, 1 | ringidcl 20083 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
13 | 12 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) → (1r‘𝑅) ∈ (Base‘𝑅)) |
14 | 11, 13 | ffvelcdmd 7088 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) → (𝐹‘(1r‘𝑅)) ∈ (Base‘𝑆)) |
15 | 14 | adantr 482 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝐹‘(1r‘𝑅)) ∈ (Base‘𝑆)) |
16 | | oveq2 7417 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦)) |
17 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
18 | 16, 17 | eqeq12d 2749 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ↔ ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦)) |
19 | | oveq1 7416 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅)))) |
20 | 19, 17 | eqeq12d 2749 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥 ↔ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦)) |
21 | 18, 20 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥) ↔ (((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦))) |
22 | 21 | rspccv 3610 |
. . . . . . 7
⊢
(∀𝑥 ∈
(Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥) → (𝑦 ∈ (Base‘𝑆) → (((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦))) |
23 | 22 | adantl 483 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → (((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦))) |
24 | | simpl 484 |
. . . . . 6
⊢ ((((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦) → ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦) |
25 | 23, 24 | syl6 35 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦)) |
26 | 25 | imp 408 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦) |
27 | | simpr 486 |
. . . . . 6
⊢ ((((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦) → (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦) |
28 | 23, 27 | syl6 35 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝑦 ∈ (Base‘𝑆) → (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦)) |
29 | 28 | imp 408 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑦) |
30 | 5, 6, 15, 26, 29 | ringurd 20008 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑆)(((𝐹‘(1r‘𝑅))(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(𝐹‘(1r‘𝑅))) = 𝑥)) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
31 | 4, 30 | mpdan 686 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
32 | 31 | eqcomd 2739 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ (𝑅 RngIsom 𝑆)) → (1r‘𝑆) = (𝐹‘(1r‘𝑅))) |