MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qssre Structured version   Visualization version   GIF version

Theorem qssre 13001
Description: The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.)
Assertion
Ref Expression
qssre ℚ ⊆ ℝ

Proof of Theorem qssre
StepHypRef Expression
1 qre 12995 . 2 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
21ssriv 3987 1 ℚ ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:  wss 3951  cr 11154  cq 12990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-z 12614  df-q 12991
This theorem is referenced by:  qsscn  13002  rpnnen1lem4  13022  rpnnen1lem5  13023  nthruc  16288  qtopbas  24780  qdensere  24790  tgqioo  24821  re2ndc  24822  resscdrg  25392  ovolq  25526  opnmblALT  25638  vitalilem4  25646  vitalilem5  25647  mbfimaopnlem  25690  lhop2  26054  ipasslem8  30856  rrhcn  33998  qqtopn  34012  rrhqima  34015  rrhre  34022  hgt750lem  34666  tgoldbachgtde  34675  irrapx1  42839  qndenserrn  46314  hoiqssbllem3  46639  opnvonmbllem2  46648  smfmullem2  46807  smfmullem4  46809
  Copyright terms: Public domain W3C validator