![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgsss3 | Structured version Visualization version GIF version |
Description: Third congruence theorem: SSS. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
Ref | Expression |
---|---|
tgsas.p | ⊢ 𝑃 = (Base‘𝐺) |
tgsas.m | ⊢ − = (dist‘𝐺) |
tgsas.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgsas.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgsas.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgsas.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgsas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgsas.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgsas.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
tgsas.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
tgsss.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
tgsss.2 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
tgsss.3 | ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
tgsss.4 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
tgsss.5 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
tgsss.6 | ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
Ref | Expression |
---|---|
tgsss3 | ⊢ (𝜑 → 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgsas.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tgsas.m | . 2 ⊢ − = (dist‘𝐺) | |
3 | tgsas.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgsas.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgsas.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
6 | tgsas.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | tgsas.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | tgsas.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
9 | tgsas.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
10 | tgsas.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
11 | tgsss.2 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) | |
12 | tgsss.3 | . 2 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) | |
13 | tgsss.1 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) | |
14 | tgsss.5 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
15 | tgsss.6 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐴) | |
16 | tgsss.4 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | tgsss1 28658 | 1 ⊢ (𝜑 → 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 class class class wbr 5143 ‘cfv 6543 (class class class)co 7415 〈“cs3 14820 Basecbs 17174 distcds 17236 TarskiGcstrkg 28225 Itvcitv 28231 cgrAccgra 28605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-fzo 13655 df-hash 14317 df-word 14492 df-concat 14548 df-s1 14573 df-s2 14826 df-s3 14827 df-trkgc 28246 df-trkgcb 28248 df-trkg 28251 df-cgrg 28309 df-hlg 28399 df-cgra 28606 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |