Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkf | Structured version Visualization version GIF version |
Description: The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021.) |
Ref | Expression |
---|---|
wlkf.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
wlkf | ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | wlkf.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | wlkprop 28076 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
4 | 3 | simp1d 1141 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 if-wif 1060 = wceq 1538 ∈ wcel 2103 ∀wral 3060 ⊆ wss 3891 {csn 4564 {cpr 4566 class class class wbr 5080 dom cdm 5600 ⟶wf 6454 ‘cfv 6458 (class class class)co 7308 0cc0 10931 1c1 10932 + caddc 10934 ...cfz 13299 ..^cfzo 13442 ♯chash 14104 Word cword 14276 Vtxcvtx 27464 iEdgciedg 27465 Walkscwlks 28061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-rep 5217 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 ax-cnex 10987 ax-resscn 10988 ax-1cn 10989 ax-icn 10990 ax-addcl 10991 ax-addrcl 10992 ax-mulcl 10993 ax-mulrcl 10994 ax-mulcom 10995 ax-addass 10996 ax-mulass 10997 ax-distr 10998 ax-i2m1 10999 ax-1ne0 11000 ax-1rid 11001 ax-rnegex 11002 ax-rrecex 11003 ax-cnre 11004 ax-pre-lttri 11005 ax-pre-lttrn 11006 ax-pre-ltadd 11007 ax-pre-mulgt0 11008 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-int 4886 df-iun 4932 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7265 df-ov 7311 df-oprab 7312 df-mpo 7313 df-om 7749 df-1st 7867 df-2nd 7868 df-frecs 8132 df-wrecs 8163 df-recs 8237 df-rdg 8276 df-1o 8332 df-er 8534 df-map 8653 df-en 8770 df-dom 8771 df-sdom 8772 df-fin 8773 df-card 9755 df-pnf 11071 df-mnf 11072 df-xr 11073 df-ltxr 11074 df-le 11075 df-sub 11267 df-neg 11268 df-nn 12034 df-n0 12294 df-z 12380 df-uz 12643 df-fz 13300 df-fzo 13443 df-hash 14105 df-word 14277 df-wlks 28064 |
This theorem is referenced by: wlkcl 28080 wksvOLD 28085 iedginwlk 28102 wlk1ewlk 28105 wlkv0 28116 wlkonwlk1l 28129 wlkres 28136 redwlk 28138 wlkp1lem2 28140 wlkp1lem3 28141 wlkp1lem4 28142 wlkp1lem6 28144 wlkp1lem8 28146 wlkp1 28147 lfgriswlk 28154 trlf1 28164 trlreslem 28165 upgr2pthnlp 28198 uhgrwkspthlem1 28219 usgr2wlkspthlem1 28223 crctcshlem2 28281 crctcshlem4 28283 crctcshwlkn0 28284 eupth2eucrct 28679 eucrctshift 28705 eucrct2eupth 28707 pfxwlk 33181 revwlk 33182 swrdwlk 33184 |
Copyright terms: Public domain | W3C validator |