| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkf | Structured version Visualization version GIF version | ||
| Description: The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021.) |
| Ref | Expression |
|---|---|
| wlkf.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| wlkf | ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | wlkf.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | wlkprop 29601 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 4 | 3 | simp1d 1142 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 if-wif 1062 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ⊆ wss 3899 {csn 4577 {cpr 4579 class class class wbr 5095 dom cdm 5621 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 0cc0 11016 1c1 11017 + caddc 11019 ...cfz 13417 ..^cfzo 13564 ♯chash 14247 Word cword 14430 Vtxcvtx 28985 iEdgciedg 28986 Walkscwlks 29586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-fzo 13565 df-hash 14248 df-word 14431 df-wlks 29589 |
| This theorem is referenced by: wlkcl 29605 iedginwlk 29626 wlk1ewlk 29629 wlkv0 29639 wlkonwlk1l 29651 wlkres 29658 redwlk 29660 wlkp1lem2 29662 wlkp1lem3 29663 wlkp1lem4 29664 wlkp1lem6 29666 wlkp1lem8 29668 wlkp1 29669 lfgriswlk 29676 trlf1 29686 trlreslem 29687 upgr2pthnlp 29721 uhgrwkspthlem1 29742 usgr2wlkspthlem1 29746 crctcshlem2 29807 crctcshlem4 29809 crctcshwlkn0 29810 eupth2eucrct 30208 eucrctshift 30234 eucrct2eupth 30236 pfxwlk 35179 revwlk 35180 swrdwlk 35182 upgrimwlklem5 48015 upgrimwlk 48016 upgrimwlklen 48017 upgrimtrlslem1 48018 upgrimtrlslem2 48019 upgrimtrls 48020 upgrimpths 48023 upgrimcycls 48025 |
| Copyright terms: Public domain | W3C validator |