![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkf | Structured version Visualization version GIF version |
Description: The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021.) |
Ref | Expression |
---|---|
wlkf.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
wlkf | β’ (πΉ(WalksβπΊ)π β πΉ β Word dom πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (VtxβπΊ) = (VtxβπΊ) | |
2 | wlkf.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
3 | 1, 2 | wlkprop 29133 | . 2 β’ (πΉ(WalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))))) |
4 | 3 | simp1d 1140 | 1 β’ (πΉ(WalksβπΊ)π β πΉ β Word dom πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 if-wif 1059 = wceq 1539 β wcel 2104 βwral 3059 β wss 3949 {csn 4629 {cpr 4631 class class class wbr 5149 dom cdm 5677 βΆwf 6540 βcfv 6544 (class class class)co 7413 0cc0 11114 1c1 11115 + caddc 11117 ...cfz 13490 ..^cfzo 13633 β―chash 14296 Word cword 14470 Vtxcvtx 28521 iEdgciedg 28522 Walkscwlks 29118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-fzo 13634 df-hash 14297 df-word 14471 df-wlks 29121 |
This theorem is referenced by: wlkcl 29137 wksvOLD 29142 iedginwlk 29159 wlk1ewlk 29162 wlkv0 29173 wlkonwlk1l 29185 wlkres 29192 redwlk 29194 wlkp1lem2 29196 wlkp1lem3 29197 wlkp1lem4 29198 wlkp1lem6 29200 wlkp1lem8 29202 wlkp1 29203 lfgriswlk 29210 trlf1 29220 trlreslem 29221 upgr2pthnlp 29254 uhgrwkspthlem1 29275 usgr2wlkspthlem1 29279 crctcshlem2 29337 crctcshlem4 29339 crctcshwlkn0 29340 eupth2eucrct 29735 eucrctshift 29761 eucrct2eupth 29763 pfxwlk 34410 revwlk 34411 swrdwlk 34413 |
Copyright terms: Public domain | W3C validator |