MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdeqs1cat Structured version   Visualization version   GIF version

Theorem wrdeqs1cat 13839
Description: Decompose a nonempty word by separating off the first symbol. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
Assertion
Ref Expression
wrdeqs1cat ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → 𝑊 = (⟨“(𝑊‘0)”⟩ ++ (𝑊 substr ⟨1, (♯‘𝑊)⟩)))

Proof of Theorem wrdeqs1cat
StepHypRef Expression
1 simpl 476 . . 3 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐴)
2 wrdfin 13620 . . . 4 (𝑊 ∈ Word 𝐴𝑊 ∈ Fin)
3 1elfz0hash 13494 . . . 4 ((𝑊 ∈ Fin ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊)))
42, 3sylan 575 . . 3 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊)))
5 lennncl 13622 . . . . 5 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
65nnnn0d 11702 . . . 4 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ0)
7 eluzfz2 12666 . . . . 5 ((♯‘𝑊) ∈ (ℤ‘0) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
8 nn0uz 12028 . . . . 5 0 = (ℤ‘0)
97, 8eleq2s 2876 . . . 4 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
106, 9syl 17 . . 3 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
11 ccatpfx 13810 . . 3 ((𝑊 ∈ Word 𝐴 ∧ 1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 1) ++ (𝑊 substr ⟨1, (♯‘𝑊)⟩)) = (𝑊 prefix (♯‘𝑊)))
121, 4, 10, 11syl3anc 1439 . 2 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → ((𝑊 prefix 1) ++ (𝑊 substr ⟨1, (♯‘𝑊)⟩)) = (𝑊 prefix (♯‘𝑊)))
13 pfx1 13812 . . 3 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → (𝑊 prefix 1) = ⟨“(𝑊‘0)”⟩)
1413oveq1d 6937 . 2 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → ((𝑊 prefix 1) ++ (𝑊 substr ⟨1, (♯‘𝑊)⟩)) = (⟨“(𝑊‘0)”⟩ ++ (𝑊 substr ⟨1, (♯‘𝑊)⟩)))
15 pfxid 13793 . . 3 (𝑊 ∈ Word 𝐴 → (𝑊 prefix (♯‘𝑊)) = 𝑊)
1615adantr 474 . 2 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → (𝑊 prefix (♯‘𝑊)) = 𝑊)
1712, 14, 163eqtr3rd 2822 1 ((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → 𝑊 = (⟨“(𝑊‘0)”⟩ ++ (𝑊 substr ⟨1, (♯‘𝑊)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wne 2968  c0 4140  cop 4403  cfv 6135  (class class class)co 6922  Fincfn 8241  0cc0 10272  1c1 10273  0cn0 11642  cuz 11992  ...cfz 12643  chash 13435  Word cword 13599   ++ cconcat 13660  ⟨“cs1 13685   substr csubstr 13730   prefix cpfx 13779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-concat 13661  df-s1 13686  df-substr 13731  df-pfx 13780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator