![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdeqs1cat | Structured version Visualization version GIF version |
Description: Decompose a nonempty word by separating off the first symbol. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.) |
Ref | Expression |
---|---|
wrdeqs1cat | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1, (♯‘𝑊)〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐴) | |
2 | wrdfin 13620 | . . . 4 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊 ∈ Fin) | |
3 | 1elfz0hash 13494 | . . . 4 ⊢ ((𝑊 ∈ Fin ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) | |
4 | 2, 3 | sylan 575 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) |
5 | lennncl 13622 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
6 | 5 | nnnn0d 11702 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ0) |
7 | eluzfz2 12666 | . . . . 5 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘0) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) | |
8 | nn0uz 12028 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 7, 8 | eleq2s 2876 | . . . 4 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊))) |
10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) |
11 | ccatpfx 13810 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 1) ++ (𝑊 substr 〈1, (♯‘𝑊)〉)) = (𝑊 prefix (♯‘𝑊))) | |
12 | 1, 4, 10, 11 | syl3anc 1439 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix 1) ++ (𝑊 substr 〈1, (♯‘𝑊)〉)) = (𝑊 prefix (♯‘𝑊))) |
13 | pfx1 13812 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊 prefix 1) = 〈“(𝑊‘0)”〉) | |
14 | 13 | oveq1d 6937 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix 1) ++ (𝑊 substr 〈1, (♯‘𝑊)〉)) = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1, (♯‘𝑊)〉))) |
15 | pfxid 13793 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑊 prefix (♯‘𝑊)) = 𝑊) | |
16 | 15 | adantr 474 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊 prefix (♯‘𝑊)) = 𝑊) |
17 | 12, 14, 16 | 3eqtr3rd 2822 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1, (♯‘𝑊)〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 ∅c0 4140 〈cop 4403 ‘cfv 6135 (class class class)co 6922 Fincfn 8241 0cc0 10272 1c1 10273 ℕ0cn0 11642 ℤ≥cuz 11992 ...cfz 12643 ♯chash 13435 Word cword 13599 ++ cconcat 13660 〈“cs1 13685 substr csubstr 13730 prefix cpfx 13779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 df-concat 13661 df-s1 13686 df-substr 13731 df-pfx 13780 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |