Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpcco1st | Structured version Visualization version GIF version |
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpcco1st.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpcco1st.b | ⊢ 𝐵 = (Base‘𝑇) |
xpcco1st.k | ⊢ 𝐾 = (Hom ‘𝑇) |
xpcco1st.o | ⊢ 𝑂 = (comp‘𝑇) |
xpcco1st.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
xpcco1st.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
xpcco1st.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
xpcco1st.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) |
xpcco1st.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) |
xpcco1st.1 | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
xpcco1st | ⊢ (𝜑 → (1st ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcco1st.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | xpcco1st.b | . . 3 ⊢ 𝐵 = (Base‘𝑇) | |
3 | xpcco1st.k | . . 3 ⊢ 𝐾 = (Hom ‘𝑇) | |
4 | xpcco1st.1 | . . 3 ⊢ · = (comp‘𝐶) | |
5 | eqid 2737 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
6 | xpcco1st.o | . . 3 ⊢ 𝑂 = (comp‘𝑇) | |
7 | xpcco1st.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | xpcco1st.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | xpcco1st.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | xpcco1st.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) | |
11 | xpcco1st.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | xpcco 17690 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = 〈((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹)), ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉(comp‘𝐷)(2nd ‘𝑍))(2nd ‘𝐹))〉) |
13 | ovex 7246 | . . 3 ⊢ ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹)) ∈ V | |
14 | ovex 7246 | . . 3 ⊢ ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉(comp‘𝐷)(2nd ‘𝑍))(2nd ‘𝐹)) ∈ V | |
15 | 13, 14 | op1std 7771 | . 2 ⊢ ((𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = 〈((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹)), ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉(comp‘𝐷)(2nd ‘𝑍))(2nd ‘𝐹))〉 → (1st ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹))) |
16 | 12, 15 | syl 17 | 1 ⊢ (𝜑 → (1st ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 〈cop 4547 ‘cfv 6380 (class class class)co 7213 1st c1st 7759 2nd c2nd 7760 Basecbs 16760 Hom chom 16813 compcco 16814 ×c cxpc 17675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-slot 16735 df-ndx 16745 df-base 16761 df-hom 16826 df-cco 16827 df-xpc 17679 |
This theorem is referenced by: 1stfcl 17704 |
Copyright terms: Public domain | W3C validator |