| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcco1st | Structured version Visualization version GIF version | ||
| Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpcco1st.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| xpcco1st.b | ⊢ 𝐵 = (Base‘𝑇) |
| xpcco1st.k | ⊢ 𝐾 = (Hom ‘𝑇) |
| xpcco1st.o | ⊢ 𝑂 = (comp‘𝑇) |
| xpcco1st.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| xpcco1st.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| xpcco1st.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| xpcco1st.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) |
| xpcco1st.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) |
| xpcco1st.1 | ⊢ · = (comp‘𝐶) |
| Ref | Expression |
|---|---|
| xpcco1st | ⊢ (𝜑 → (1st ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcco1st.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | xpcco1st.b | . . 3 ⊢ 𝐵 = (Base‘𝑇) | |
| 3 | xpcco1st.k | . . 3 ⊢ 𝐾 = (Hom ‘𝑇) | |
| 4 | xpcco1st.1 | . . 3 ⊢ · = (comp‘𝐶) | |
| 5 | eqid 2734 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 6 | xpcco1st.o | . . 3 ⊢ 𝑂 = (comp‘𝑇) | |
| 7 | xpcco1st.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | xpcco1st.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | xpcco1st.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 10 | xpcco1st.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) | |
| 11 | xpcco1st.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | xpcco 18198 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = 〈((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹)), ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉(comp‘𝐷)(2nd ‘𝑍))(2nd ‘𝐹))〉) |
| 13 | ovex 7446 | . . 3 ⊢ ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹)) ∈ V | |
| 14 | ovex 7446 | . . 3 ⊢ ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉(comp‘𝐷)(2nd ‘𝑍))(2nd ‘𝐹)) ∈ V | |
| 15 | 13, 14 | op1std 8006 | . 2 ⊢ ((𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = 〈((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹)), ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉(comp‘𝐷)(2nd ‘𝑍))(2nd ‘𝐹))〉 → (1st ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹))) |
| 16 | 12, 15 | syl 17 | 1 ⊢ (𝜑 → (1st ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4612 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 Basecbs 17229 Hom chom 17284 compcco 17285 ×c cxpc 18183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17230 df-hom 17297 df-cco 17298 df-xpc 18187 |
| This theorem is referenced by: 1stfcl 18212 |
| Copyright terms: Public domain | W3C validator |